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Abstract 

Conceptual formalism supported by typical ontologies may not be sufficient to represent uncertainty 

information which is caused due to the lack of clear cut boundaries between concepts of a domain. Fuzzy 

ontologies are proposed to offer a way to deal with this uncertainty. This paper describes the state of the 

art in developing fuzzy ontologies. The survey is produced by studying about 35 works on developing 

fuzzy ontologies from a batch of 100 articles in the field of fuzzy ontologies.  

 



 

 

1. Introduction 

 
Ontology is an explicit, formal specification of a shared conceptualization in a human understandable, machine-

readable format. Ontologies are the knowledge backbone for many intelligent and knowledge based systems [1, 2]. 

However, in some domains, real world knowledge is imprecise or vague. For example in a search engine one may be 

interested in ”an extremely speedy, small size, not expensive car”. Classical ontologies based on crisp logic are not 

capable of handling this kind of knowledge. Fuzzy ontologies were proposed as a combination of fuzzy theory and 

ontologies to tackle such problems. 

On the topic of fuzzy ontology, we studied about 100 research articles which can be categorized into four main 

categories. The first category includes the research works on applying fuzzy ontologies in a specific domain-

application to improve the performance of the application  such as group decision making systems [3] or visual 

video content analysis and indexing [4].The ontology development parts of the works in this category were done 

manually or were not of much concentration. The second category includes the researches on developing fuzzy 

ontologies by an automatic or semi–automatic approach. For example Lee and colleagues [5] propose a method to 

fuzzify an existing domain ontology and apply it in news summarization. The third category focuses on 

representation, reasoning and developing inference services in fuzzy ontologies. Most of the researchers in this 

category offer fuzzy description logic as a theoretical counterpart of fuzzy ontologies [6] and some other researchers 

propose other approaches [7-9]. The fourth category provides some facilities for fuzzy ontologies. For example 

Truong and Nguyen [10] propose a framework for fuzzy ontology alignment. Bobillo and Straccia [11] provide the 

syntax and semantic of a  fuzzy description logic with fuzzy aggregation operators. 

This paper includes a survey on the state of the art in developing fuzzy ontologies. Thus, our research mainly 

includes a survey on the second category of researches, although we will introduce some related works in other 

categories too.  

Shamsfard and Abdollahzadeh [12] have introduced a framework to study ontology learning systems. Their 

framework contains six dimensions; elements learned, starting point, preprocessing, learning method, the result and 

evaluation method. In this paper we extend their framework and use the new dimension set to study the development 

(learning) of fuzzy ontologies. In this extension, we’ve added a new fuzzy related dimension; “supporting 

fuzziness”; changed the first dimension – learned elements - into a new one: “fuzzified elements” and changed the 

dimension “developing and test environment” into “application” dimension. 



 

 

In this paper, after discussing some definitions we describe some fuzzy ontology learning (acquisition and 

development) research activities and compare them upon our extended framework. 

The rest of this paper is organized as follows. In the next section fuzzy logic and fuzzy set theory are briefly 

introduced. Then we discuss the need to fuzzy ontologies, give some definitions for fuzzy ontologies, and discuss 

about how to represent them. Then we will have a comparative review on different methods for developing fuzzy 

ontologies. Finally, we will have a look at the applications of fuzzy ontologies and evaluating them and finally 

conclusions and open challenges are discussed. 

2. Fuzzy Logic 

 
Fuzzy set theory, an extension of traditional set theory, is used to represent vague or imprecise information. While in 

classical set theory elements either belong to a set or not, in fuzzy set theory elements can belong to a set to some 

degree. Fuzzy set theory uses a membership function to allow belongings of an item in a set to be any real number 

between 0 and 1. A fuzzy set A with respect to a universe of discourse M is characterized by the membership 

function μ and a membership value in the unit interval [0, 1],A ={x, µA (x)) | x∈ M}1 while µA (x) models degree of 

belongings of x to set A [13].  

In fuzzy logic applications the numerical values of variables are usually substituted by non-numeric linguistic 

variables to facilitate the expression of rules and facts[14]. For example, a linguistic variable such as height for a 

human may have values such as short, medium height or tall with the following membership functions 
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Figure 1. Fuzzy linguistic variable “height” with linguistic values “Short”,” Medium height” and Tall for concept human 

 

However, the great utility of linguistic variables is that they can be modified via linguistic modifiers such as very, 

slightly and extremely applied to the primary terms. The linguistic modifiers are used to alter the strength of original 

linguistic values.  

Fuzzy logic, based on fuzzy set theory has been applied to several areas such as information retrieval [15], image 

processing [16] and controller systems [17, 18] which are essential parts to regulate the behavior of sensitive devices 



 

 

[19, 20]. In this paper, we discuss using fuzzy logic in ontologies to represent knowledge in a domain with vague 

concepts.  

3. Why Fuzzy Ontology Is Needed? 

 
Classical Ontologies have some limitations for representing knowledge in real world. Firstly, concepts which are 

used to describe real world in some domain are inherently vague. For example, a town is a small and less crowded 

city, but small and crowded are not clearly well defined. It may be difficult to say that a special region fully belongs 

to the category of towns or cities. It is more desirable to state that it belongs to both of these concepts with different 

degrees. 

Similarly, for having a concept hierarchy it is more rational to have a fuzzy concept hierarchy where a town can be 

considered as a sub-concept of a city to some degree. 

Furthermore, a concept may have attribute values taking vague values, for example a person can have attribute “age” 

as a linguistic variable taking values “young”, “middle aged” or “old” defined by means of fuzzy numbers. 

And finally, in some domains we may need fuzzy relations between entities. For example, in the domain of 

Molecular Biology a relation can be associated with different biological entities with different degrees of strength. In 

the work of Abulaish and Dey [21] it is observed that the relation “inhibitor of” occurs frequently between protein 

molecule and protein complexes while the same relation is rare between two protein molecules. 

In addition to the inherent uncertainty that may happen in some real-world domains, uncertainty may happen due to 

the nature of application. For example in a search engine in the case of overloaded concepts1, the location of concept 

may be different for users with different preferences [22]. Also, the uncertainty may be because of differences in 

experts’ conceptualization of a domain. For example, New York Times categorizes news into “World, Us, 

NY/Region, Business, Technology, Science, Health, Sports, Opinion, Arts, Style and Travel”, While CNN 

categorizes news into categories “Home, World, US, Politics, Entertainment, Health, Technology, Travel, Living, 

Business, Sport and Time”. A one-to-one mapping which may be required by an application like news 

summarization is not possible without inferring a kind of uncertainty [23]. 

As a result of these imprecision, we need a way to handle this kind of knowledge. Fuzzy ontology would be a good 

solution to this problem which we are going to define in the next session. 

 
1 Overloaded concept is a concept which occurs in different part of an ontology having relation to different concepts such as java which happens 
as a kind of coffee, an island in Indonesia south of Borneo or a programming language. 



 

 

4. What Is Fuzzy Ontology? 

 
Different researchers present different definitions for fuzzy ontology. Most of these definitions are application 

dependent and are on fuzzifying some ontology elements according to their application needs. In other words, the 

main difference in defining fuzzy ontologies is related to the difference in the ontology element which is going to be 

fuzzified. According to literature, ontology elements which are involved in the fuzzification process may include 

concepts, instances, taxonomic and non-taxonomic relations, properties (attributes) and axioms. 

There are two ideas for defining fuzzy concepts. Some researchers [24],[25] define fuzzy concept as a concept 

which has fuzzy attributes, and some others [26] define fuzzy concept as a fuzzy set on the set of instances. In this 

study we refer to the former as fuzzy attributes and the latter as fuzzy taxonomic relations (the relation between 

instances and their super class). Thus, the fuzzy elements of an ontology actually include one or more of attributes, 

taxonomic relations and non-taxonomic relations. 

To have a wide-coverage definition of fuzzy ontologies which is acceptable by the community, let's first have an 

overview on various definitions (from simple to complex) by various researchers in this field. In this overview we 

divide the definitions into three main categories; (1) including just fuzzy relations or attributes, (2) including both 

fuzzy attributes and fuzzy relations and (3) including fuzzy attributes, fuzzy relations and fuzzy axioms. 

Some researchers define fuzzy ontology as an ontology with fuzzy relations. The relations which are going to be 

fuzzified may be taxonomic (as in [24]) or non-taxonomic (as in [5] or both (as in [25]). As an example we can 

mention Lam [27] who defines fuzzy ontology as OF (v, E, l, µf) where v is a finite set of vertices (concepts) and E 

∈V ×V is a set of edges (relations). The edges E are assigned a continuous fuzzy value (µF: E →[0 1]) and a label l : 

E →�L. In this definition the fuzziness is applied to a relation as a weight. 

Some researchers define fuzzy ontology as an ontology with fuzzy attributes. Samani and Shamsfard [28],[29] 

define fuzzy ontology as a 4 tuple OF= ( C, PC, R, A) where,  

 C is a set of concepts. 

 P C is a set of entity properties that can be represented as a 8 tuple pc (c, p, vp, gp, np , qp, hp , f)where  

o c is an ontology concept. 

o p is the property name. 

o vp is a set of values of the property.  

o gp is a set of membership functions assigned to the members of vp. 



 

 

o np is a set of membership degrees assigned to vp. 

o qp models linguistic modifier (which is optional ) . 

o hp is a set of membership functions assigned to each modifier.  

o f is a restriction facet such as type or cardinality. The type may be {Integer, float, etc}. Cardinality 

defines the upper and lower limits on the number of values of the property.  

 R is a set of relations between concepts.  

 A is a set of axioms. 

They state that according to the reasoning requirement different parts of ontologies may be fuzzy. As in the 

application of their model they need fuzzy attributes they give this definition.  

Some other researchers extend the fuzziness to cover more elements and define fuzzy ontology as an ontology with 

fuzzy attributes, and fuzzy relations. In this category we can mention Lau [24] who defines fuzzy ontology as a 6-

tuple OF = { X, A, C, RXC, RAC, RCC} where  

 X is a set of objects. 

 A is the set of attributes describing the objects.  

 C is a set of concepts (classes).  

 The fuzzy relation RXC: X × C →[0 1] assigns a membership to the pair (xi, ci) for all xi ∈ X, ci ∈ C. 

 The fuzzy relation RAC: A ×C →[0 1] defines the mapping from the set of attributes A to the set of concepts 

C. 

 The fuzzy relation RCC: C ×C →[0 1] defines the strength of the sub-class/ super-class relationships among 

the set of concepts C. 

In this definition,RAC is denoting fuzzy attributes (fuzziness in belonging an attribute to a class) and RXC and RCC are 

showing fuzzy taxonomic relations (instance-of and sub-class-of respectively). This research does not talk about 

(fuzzy or crisp) axioms. 

Abulaish and Dey [30, 31]  are other members of this category who give a more descriptive definition. They define 

fuzzy ontology as an ontology with fuzzy properties and relations and let these fuzzy elements be described by fuzzy 

numbers or linguistic quantifiers. In their definition a fuzzy ontology is shown by OF (C, PF, RF, M) Where  

 C is a set of concepts.  



 

 

 PF is a set of fuzzy concept properties. A property PF is defined as a quadruple of the form pf (c, vf, qf, f) 

where  

o c ∈ C is an ontology concept 

o vf represents fuzzy attribute values which is either fuzzy number or fuzzy quantifier.  

o qf models linguistic qualifiers which are modifiers.  

o f is the restriction facets on vf.  

 RF is a set of inter-concept relations. Like fuzzy concept properties, RF is defined as a quadruple of the form 

rf (c1, c2, t, qf) where  

o c1,c2∈C is an ontology concept. 

o t represents relation type.  

o qf models relation strengths and are linguistic variables which can represent the strength of 

association between concept-pairs < c1, c2>.  

 M defines universe of discourse which is the range an attribute can take value. 

Dey and Abulaish [23] define fuzzy ontology as OF (C, RF) Where 

 C denotes the set of domain concepts. 

  RF denotes a set of inter-concept relations each defined for each pair of concepts which is defined by a 

quadruple RF = {rf| <rf, (c,d), vf, qf> } where 

o r is a relation name. 

o (c, d)∈C×C represents ordered pair of ontology concepts. 

o vf denotes fuzzy values that can be associated to the relation. 

o qf  models fuzzy qualifier. 

In this research they define two kinds of relations including inter-concept relations and concept descriptors which 

are like properties, In the formal definition, only fuzzy relations are fuzzy, but conceptually they make properties 

fuzzy too. 

There are also some work which define fuzzy ontology with special kinds of relations, attributes or properties. For 

example Lee and colleagues [5] define fuzzy ontology as an extended domain ontology with fuzzy concepts and 

fuzzy relationships. They define two kinds of fuzzy relationships, including Location Narrower Relationship (LNR) 

and Location Broader Relationship (LBR).  



 

 

They try to make the news ontology fuzzy. Concepts are refined by embedding a set of membership degrees 

associated with a set of news events. Although the authors claim to have fuzzy concepts and fuzzy relationships, 

their paper just talks about fuzzifying part-of (meronymy) relations in a hierarchy.  

 As another example Calegari and Ciucci [26] define a fuzzy ontology as OF = {C, I, R, F, A} where 

 I is the set of individuals.  

 C is the set of concepts. Each concept c ∈C is a fuzzy set on the domain of instances, C: I → [0 1] . 

 R is a set of relations. Each r ∈ R is an n-ary fuzzy relation on the domain of entities (The set of concepts 

and individuals), R: En→ [0 1].  

 F is a set of the fuzzy relations on the set of entities E and a specific domain contained in D = {integer, 

string...}. In detail, they are n-ary functions such that each element f ∈ F is a relation F: E(n-1)× P→ [0 1] 

where P ∈ D.  

 A is the set of axioms expressed in a proper logical language. 

However, they previously have defined fuzzy ontology with Fuzzy instances and properties [32] in a simpler way. In 

their older definition, a fuzzy ontology is an ontology extended with fuzzy values which are assigned through the 

two functions 

g: (Concepts ∪ Instances) × (Properties ∪ Prop���) → [0 1] 

h: (�������� ∪ ���������) → [0 1] 

Ghorbel and colleagues [33] is another definition of this category which defines a fuzzy ontology as a 7-tuple OF = 

(C, P, CF, PF, R, RF, As, AsF, A) where:  

 C is a set of crisp concepts defined for the domain.  

 P is a set of crisp concept properties. 

 CF is a set of fuzzy concepts. A fuzzy concept is a concept which possesses, at least, one fuzzy property 

 PF  is a set of fuzzy concept properties . A fuzzy property is a property which is represented in the form of 

fuzzy linguistic variable. 

 R is a set of crisp binary semantic relations defined between concepts in C or fuzzy concepts in CF.  

 RF is a set of fuzzy binary semantic relations defined between crisp concepts in C or fuzzy concepts in CF. 

A fuzzy binary semantic relation is a relation which be represented in the form of a fuzzy linguistic 

variable. 



 

 

 As is a set of crisp binary associations defined between concepts in C or fuzzy concepts in CF. 

 AsF is a set of fuzzy binary associations defined between crisp concepts in C or fuzzy concepts in CF. A 

fuzzy binary association is a relation which be represented in the form of a fuzzy linguistic variable. 

 A is a set of axioms. An axiom is a real fact or reasoning rule. 

The last category of researches involves axioms in fuzzy ontology definition as well as properties and relations. For 

example Zhai and colleagues [34] present the most covering general definition. They define fuzzy ontology as OF (I, 

C, PC, R, PR, AF) where  

 I is the set of individuals, also called instances of the concepts. 

 C is a set of concepts. 

 PC is a set of concepts properties. A property p�PC is defined as a 5-tuple of the form pc (c, vf , qf , f ,U) 

where  

o c�C is an ontology concept,  

o vf   represents property values,  

o qf models linguistic qualifiers, which can control or alter the strength of a property value vf ,  

o f is the restriction facets on vf , and  

o U is the universe of discourse.  

 The property pc�PC has also the non-fuzzy form PC (c, v, f).  

 R is a set of inter-concept relations between concepts. The relation type is not only the ordinary binary 

relation of r � C × C, but also is the fuzzy relation from C to C. 

 PR is a set of relations properties. Like concept properties, pr�PR is defined as a 4-tuple of the form 

pr( c1,c2,r,sf ) where  

o c1, c2 �C , are ontology concepts,  

o r represents relation, and  

o sf :[0,1] models relation strengths and has meaning of fuzzy set on C × C , which can represent the 

strength of association between concept-pairs ( c1 , c2) .  

 AF is a set of fuzzy rules. 

While in Abulaish and Dey’s [30, 31] definition, relations and properties may be either fuzzy numbers or fuzzy 

linguistic variables, Ghorbel and colleagues [33] define both of them as a linguistic variable and  in Zhai et al’s [34] 



 

 

definition, relations are fuzzy numbers and properties may be either fuzzy numbers or fuzzy linguistic variables. 

Zhai et al [34] also includes fuzzy rules which are not present in the definition of Abulaish and Dey [30, 31] and 

Ghorbel and colleagues [33]. 

Ortega [35] defines fuzzy ontology as an ontology which uses fuzzy logic to provide a natural representation of 

imprecise and vague knowledge and ease reasoning over it. He disagreed to define a fuzzy ontology by enumerating 

its fuzzy elements as it threats the scalability and reusability of definitions. He states that new languages will offer 

new possibilities to be extended with fuzzy elements but current definitions do not cover them. For example, none of 

the above definitions mentioned fuzzy taxonomy of relations. 

However, if we want to give a formal definition for fuzzy ontology there is no other way but enumerating fuzzy 

elements. As it can be seen there are many common components in different definitions given for fuzzy ontologies. 

In this paper, we complete the previous definitions to cover various dimensions of fuzziness in fuzzy ontologies. To 

do so, we modify  and extend the definition of Samani and Shamsfard [28] to fuzzy relations and define fuzzy 

ontology as a 5 tuple OF = ( C, PC, R, PR, AF) where,  

 C is a set of entities. 

 P C is a set of entity properties that can be represented as a 8 tuple pe(e, p, vp, gp, qp, hp , f)where,  

o E is an ontology concept.  

o p is the property name.  

o vp is a set of values of the property. 

o gp is a set of membership functions assigned to the members of vp. 

o qp models linguistic modifier (which is optional ) . 

o hp is a set of membership functions assigned to each modifier which shows how the fuzzy value 

for a combination of this modifier with the base linguistic value should be computed.  

o f is a restriction facet such as type or cardinality. The type may be {Integer, float, etc}. Cardinality 

defines the upper and lower limits on the number of values of the property. Other facets may be 

defined by the ontology engineers.  

 R is a set of relations. 

 PR is a set of relation properties. Such as PC, PR is a 8 tuple pr (c1, c2, r, vr, g, qr, hr, f) in which  

o c�, c� ∈ C are concepts of ontology.  



 

 

o r represents a relation between c1 and c2.  

o vr is a set of linguistic values for the relation value.  

o gr  is a set of membership functions assigned to each linguistic value .  

o qr models a set of linguistic modifiers of linguistic values.  

o hr is a set of membership functions assigned to each modifier.  

o F is a restriction facet like domain and range.  

 AF is a set of fuzzy axiom in the form (P, nt). Where P is a proposition like (IF A THEN B) and nt is its truth 

degree.  

Classical ontologies are special kind of fuzzy ontologies. So, we want this definition to be backward compatible 

with classical ontologies. In classical ontologies a concept property is defined by a triple (c, p, f) and a relation is 

defined by triple (c1, c2, f ) with other variables as an empty  set . 

For example, in an ontology concept: Human has the property: height (P C) which can have linguistic values short, 

medium-height and tall (vp ) with their assigned membership function (gp) (as in Figure 1).  

A set of modifier such as very and slightly (qp) may be assigned to the base linguistic values with their assigned 

membership functions (hp). For example, one possible hp for modifier very could be defined in this way: 

������� = (��)��ℎ��� � �� �ℎ� ���������� ����� ���� ����� 

Suppose in an ontology the concept human be a child of a parent concept “living things”. So, the np {0, 0.4, 0.6} 

shows that the concept human has the membership 0.4 to the medium-height living thing and membership degree 

0.6 to the tall living thing. The height attribute is represented formally in the following way. 

{E: “Human”, P: ”Weightt”, vp:{ light, Medium-weight, Heavy}, gp:{ 140-145-155-160, 155-160-170-175,170-175-

185-190}, np:{ 0,.04,0.6}, qp:{ very}, hp:{ Pow-By-2}, f:{ Range: (135-185)}}  

The same example is held for the fuzzy relation. For example, in an ontology one may need to assign strength 

associated to its relations. This strength can be a number or a linguistic value such as strong, weak and medium and 

optionally a set of modifiers can be assigned to it with their own linguistic value. Also, it is possible to talk about 

other properties of relation (a reification process may be needed). For example, we may need to enrich the ontology 

with the fuzzy attribute price of the relation “hiring”. Linguistic values like cheap, medium, expensive can be 

defined. In the next Section we will discuss about representing fuzzy ontologies. 



 

 

5. How Fuzzy Ontology Is Represented? 

 
As the theoretical counterpart of fuzzy ontology, the fuzzy description logics (FDLs) have also attracted much 

attention from researchers. 

Concepts and relations in fuzzy description logic are fuzzy sets. For example, the concept “YoungMan” is a fuzzy 

concept and is defined as: 

�������� = ��� ∩ ∃��� . ����� 

“age” expression is a fuzzy concept (linguistic variable) and it gets fuzzy linguistic value:” young”. Fuzzy linguistic 

value “young” may be defined with a trapezoidal function such as 
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Figure 2-Fuzzy trapezoidal function for concept “YoungMan”. 

Figure 2 shows the diagram of the trapezoidal function. Fuzzy Description Logic extends the syntax and semantic of 

concepts and roles to the fuzzy ones by adding fuzzy membership weights to define a new syntax and semantic on 

the crisp DLs. A membership function (MF) is a curve which illustrates the mapping between the input space to a 

membership value {between 0 and 1}[36]. There are different forms of membership function available in literature 

like triangular, trapezoidal, Gaussian, singleton, and piecewise linear[37].  

A lot of researchers have studies fuzzifying the existing description logics. For examples, Straccia [38] presented 

fuzzy ALC and a fuzzy version of SHOIN (D) [39]. Stoilos and colleagues [40] introduced a fuzzy extensions of 

SHIN and a fuzzy SHOIN [41]. Bobillo and Straccia [42] provide the syntax and semantics of a fuzzy Description 

Logic with fuzzy integrals. For a survey on Fuzzy DLs readers can refer to [43].  

However, not all researchers talk about fuzzy DLs for representing fuzzy ontologies. Bobillio and Straccia [44] 

propose to have an ontology to represent concepts of a fuzzy ontology and use this ontology to represent fuzzy 

ontologies within current Semantic Web languages. In another research, Bobillio and Straccia [45] use OWL2 

annotations for representing fuzziness in ontologies. Lv and colleagues [7, 8] propose fuzzy relational database as an 

efficient solution to store fuzzy ontologies. Yeung and Leung [9] propose a formal model for handling fuzzy 

membership and typicality of Instances in ontologies. Then a logic for the ontology model based on fuzzy 



 

 

propositional modal logic is presented. Cai  and  Leung [46] propose a formal model for fuzzy ontology with the 

ability of property importance and property hierarchy. 

Technologies of ontologies have a special role in semantic web. For representing fuzzy knowledge in semantic web, 

fuzzy extension of semantic web languages such as RDF [47], OWL [48], RuleML[49] ,etc are also presented. 

Besides representing fuzzy concepts and roles, development of fuzzy description logic has provided the capability of 

reasoning with fuzzy data. Stoilos and colleagues [40] introduced a tableaux algorithm for the fuzzy extensions of 

SHIN and also the fuzzy extensions of f-SHOIN [41]. Straccia [38] presented an algorithm for reasoning on fuzzy 

ALC. The algorithms are based on expansion rules defined in fuzzy DL. These Expansion rules transform a set of 

fuzzy constraints to a set of simpler ones until finding a clash or making a clash free set of constraints. 

Several reasoners for fuzzy description logic is also provided such as FIRE [50] which implements a tableaux 

algorithm for fuzzy SHIN. Delorean [51] which reduces reasoning in fuzzy SHOIN to reasoning in crisp SHOIN, 

And Fuzzy DL [52] which implements a combination of a tableaux algorithm and a MILP optimization for the DL 

SHIF. Others include GERDS [53],GURDL [54],YADLR [55],etc.  

6. How Fuzzy Ontology Is Developed? 

 
In this section, we divide developing of fuzzy ontologies into three parts including methodologies, models and 

frameworks and developing methods. Methodologies are used to develop the fuzzy ontology manually. Models and 

frameworks need assignment of fuzzy weights manually by domain experts. They offer the framework to reason 

new fuzzy memberships from the initial existing fuzzy memberships or provide some application based on their 

models. Developing methods use automation to provide fuzzy memberships. However, in some parts human 

intervention may be needed. We name methods without special name with the name of their authors2. The next 

section compares these methods.  

6.1. Fuzzy Ontology Development Methodologies 

 
As we stated, there are some researches which provides methodologies. Some researchers use their own 

methodologies for developing fuzzy ontology [33, 56-60]. From them the following is selected which was the most 

comprehensive one with least dependency to the domain. 

 
2 In this Paper, from papers written by the same authors with similar content, we chose one of them which were most recent or most cited. 



 

 

6.1.1. IKARUS-Onto 

IKARUS-Onto (Imprecise Knowledge Acquisition Representation and Use) [60] propose a methodology for  

developing fuzzy ontologies from existing crisp ones. The focus of the methodology is not so much on the structure 

of the fuzzy ontology but rather on the process of its development and the ultimate content it has. It has some tips 

and guide lines for ontology engineers to correctly identify the vague knowledge of the domain, determine fuzzy 

ontology elements and decide about the degree of membership values. 

In this methodology, vagueness is defined as predicate that contains borderline cases. Borderline cases are cases 

where it is unclear if the predicate applies. For example, a person is borderline tall: not clearly tall and not clearly 

not tall. According to their definition, two basic kinds of vagueness are defined: degree vagueness and combinatory 

vagueness. Degree-vagueness occurs when the existence of borderline cases stems from the lack of precise 

boundaries along some dimensions. For example, tall has not a sharp boundary along dimension height. 

Combinatory vagueness occurs when there are a variety of conditions but it is not possible to say which are 

sufficient for application and which are not. An example of this type is Religion. There are certain features that all 

religions share (e.g. beliefs in super natural beings), but it is not clear which of these features are enough to classify 

something as a religion. The methodology has the following steps. 

Step 1: establishment of the need for fuzziness: Establishing the need for fuzziness means determining whether 

and to what extent is vagueness present in the domain at hand. A concept or relation is vague, if in the given domain, 

or application, it admits borderline cases, means if there are individuals for which it is indeterminate whether they 

instantiate the concept or if there are pairs of individuals for which it is indeterminate whether they stand in the 

relation. The same applies for attributes, pairs of individuals and literal values.  

Step 2: definition of fuzzy ontology elements: Through this step, the nature of the fuzzy element’s vagueness and 

the expected interpretation of its fuzzy degrees are made explicit. The goal of this description is to ensure that the 

defined fuzzy elements have a clear and specific vague meaning which makes them shareable and reusable. For this 

purpose, it has steps for defining fuzzy attribute values and relations, fuzzy data types and fuzzy concepts. The 

following tips are given for specifying fuzzy relations and attributes. 

1.  Determining for each relation/attribute, the type of its vagueness (combinatory or degree-vagueness). If the 

element has degree-vagueness, then the dimensions along which it is vague need to be identified. 



 

 

2. Defining for each element the exact meaning of its vagueness. If the element has degree-vagueness along 

multiple dimensions, then the distinction between the dimensions might or might not be important. In case 

it is then, it would be necessary to define a distinct fuzzy element for each dimension.  

3. Defining of the expected interpretation of each element’s fuzzy degrees. If fuzziness is due to degree-

vagueness, then the fuzzy degree of a related pair of instances means the extent to which the pair’s value 

for the given dimension places it within the elements’ application boundaries. If fuzziness is due to 

combinatory vagueness, then the fuzzy degree approximates the extent to which the pair’s set of satisfied 

application conditions of the relation/attribute is deemed sufficient for the relation/attribute to apply.  

4. The assignment of specific fuzzy degrees to pairs of instances (or instances and literal values) that 

instantiate each element. 

The process followed for the definition of fuzzy concept is similar to fuzzy relations and attributes with an important 

difference. In many cases, vague concepts “owe” their vagueness to some vague relation, attribute or term which has 

been already defined.  If that is the case, then the definition of the concept’s vagueness can be directly derived from 

the one of its causal element. 

Step 3: formalization of fuzzy ontology elements: this step some tips to decide about the way of representing 

fuzzy ontology. For this decision, the range of fuzzy ontology elements, and the range of fuzzy reasoning 

capabilities it support should be considered as representing languages has different expressive power and different 

reasoning capabilities.  

Step 4: validation of fuzzy ontology: This method defines the following criteria for the evaluation of fuzzy 

ontology 

1. Correctness: A fuzzy ontology is correct when all its fuzzy elements convey a meaning which is indeed 

vague in the given domain or application. 

2. Accuracy: A fuzzy ontology is accurate when the degrees of its fuzzy elements approximate the latter’s 

vagueness in an intuitively accurate way for the given domain or application.  

3.  Completeness: A fuzzy ontology is complete when all the vagueness of the domain has been represented 

within the ontology. 

4. Consistency: A fuzzy ontology is consistent when it does not contain controversial information about the 

domain’s vagueness as this is expressed by fuzzy degrees.  



 

 

This methodology has been applied in the developing a fuzzy enterprise ontology for a consulting firm.  

6.2. Fuzzy Ontology Models and Frameworks 

 

6.2.1. Three-Layer Fuzzy Ontology Model 

Zhai and colleagues [34] propose a three-layer architecture (model) for fuzzy ontologies. The layers include: 

concepts, properties of concepts and values of properties. Property values are ordinary values or linguistic values of 

fuzzy concepts which are defined by a fuzzy linguistic variable ontology. The fuzzy linguistic variable ontology 

contains all the property values with their assigned membership functions and the relation between them. It is 

defined by domain experts. The model is the extension of RDF data model “object-property-value”.  

Figure 3 shows an example of this model in an e-commerce application. This ontology has concept customer which 

has three attributes Age, Type and Income. Each attribute has its own linguistic values which are defined by domain 

experts.  And relations like order relation such as youth≤middle-aged≤young, equivalence relations like “gold 

customer”= “big customer”, or inclusion relation like “switched customer” ⊆ “lost customer can be defined. Others 

include reversion relation and complement relation. 

 

Figure 3-An example of 3-layer architecture for of e-commerce application [34]. 

 
A semantic query expansion process is constructed by the defined relations between fuzzy concepts of linguistic 

variable ontology. For instance, the “product” information through the property “price” can be retrieved using the 

search statement such as: 

SELECT Product (name, brand, price, …) FROM Data source WHERE Product.price ≤  expensive”. 

They state that the standard ontology and other fuzzy ontologies are not able to handle the search condition at 

semantic level, which includes fuzzy concept and semantic relation between them. 

6.2.2. Samani and Shamsfard 

Samaniand and Shamsfard [28],[29] propose a fuzzy ontology model for fuzzifying attribute values. They propose a 

complex data property structure (shown in figure 4) for keeping fuzzy attributes. The complex data property 



 

 

includes a linguistic variable and two parts of information about it, the crisp part and the fuzzy part. The crisp part 

(CrispInfo) contains crispValue which shows the ranges of the crisp value for concepts and the real crisp value (if 

any) for instances. It also contains the unit of measurement with which the value is measured. The fuzzy part 

includes linguistic values and the modifiers. Linguistic value and modifiers get value in the concept (they are 

concept attributes) while linguistic values membership degree get value in the instances (is instance attribute).  

The other parts of FuzzyInfo are the modifiers. Each modifier contains 3 fields including modifier-name, modifier 

type (expansive or restrictive), and modifier shifting number which shows how the membership function of the 

modified linguistic value could be computed. As an example the complex data property for the attribute “Size’ of the 

concept “LapTop” is shown in (Figure 4 right) They also provide a reasoning mechanism based on the proposed 

fuzzy ontology model for qualitative reasoning. They state that if the attribute gotten fuzzy is spatial attribute like 

”width”, “height”, ”length”, etc, the method is capable of doing qualitative spatial reasoning. They propose an 

extended version of OWL called E-OWL for representing their model. 
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Figure 4 Structure of Complex Data Property (Left)-A sample for concept laptop(Right)[28] 

6.2.3. FOM 

Lam [27] proposes Fuzzy Ontology Map (FOM) as an extension of a current crisp ontology. FOM is based on fuzzy 

theory and graph theory, it is a connection matrix which collects the membership value between classes in the 
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ontology. ith row in FOM represents fuzzy weights eik for class Ai and jth column represents fuzzy values ekj to class 

Aj. It starts with a base matrix created by domain experts. Starting from this base, inferring algorithms for creating 

all virtual edges for all reachable and unreachable classes is represented. Reachable and unreachable classes are 

defined in this way. 

 Reachable Classes: A, B, C are the classes in FOM. If there is an edge eBA connected from class B to class 

A with membership value µBA and an edge eCB connected from class C to class B with membership value 

µCB. As a result, class A is reachable from class C by class B. So if there is no edge from class C to class A, 

a virtual edge eCA is derived with membership value µCA. 

��� = ��� × ��� 

 Unreachable Classes: A, B, C are the classes in FOM. If there is an edge eBA connected from class B to 

class A with the membership value µBA and an edge eCA connected from class C to class A with the 

membership value µCA but there is no edge between class B and class C (either from class B to class  C or 

from class C to class B), then two conditions are discussed 

o If the fuzzy relations are symmetric, virtual edges eBC and eCB is derived with the membership value µ. 

� = ���(���, ���) =
min (���, ���)

max (���, ���)
 

o If the fuzzy relations are a symmetric eCB is derived with the membership value µBC 

μ�� = �����(μ��, μ��)) =
|μ�� − μ��|

μ��

                    μ�� = �����(μ��, μ��)) =
|μ�� − μ��|

μ��

 

If A and B are classes in FOM and there is an edge starting from class A and ending at class B with the membership 

value  µAB  and there is no edge in the opposite direction, if the fuzzy set is symmetric, a virtual edge from class B to 

class A can be created with the  membership value µsymm, 

μ���� = μ�� 

The method proposes to store fuzzy ontology using two files: an RDF/OWL document for the domain concept 

hierarchy and an XML document for the fuzzy information. The performance of creating FOM is evaluated and 

some recommendations for having a better performance are offered. 



 

 

6.2.4. Gu And Colleagues 

Gu and colleagues [61] present a framework for developing a fuzzy ontology which is general (not domain specific) 

and supports reasoning. Their method introduces three relations which are found in all domains. The relations are 

called fuzzy instance relation, fuzzy concept relation and fuzzy concept base relation. Fuzzy instance relation is 

ordinary role in fuzzy description logic. Based on this relation, others are defined. 

 Fuzzy concept relation: In some domains, there may exist some special fuzzy instance relations such that, all the 

membership degrees between the instances of two concepts are the same. So the relation is moved to the concepts 

and is called fuzzy concept relation (Figure 5-left). 

 

Figure 5-Fuzzy Concept Relation (left) Fuzzy Concept Base Relation(right) [61] 

 Fuzzy concept base relation (FCBR for short): It is defined as a set of fuzzy concept relations such as the concept 

set {X1, X2…, Xm} of X and the set {Y1,Y2…,Yn} of Y (the relation between Xis and  X and Yis and  Y are “kind 

of” ) such that, the membership of all of the Xis in X and Yis in Y are the same. So the relation is moved to the 

parent concept (Figure 5-right). 

A reference process for guiding the construction of fuzzy concept base relations is then introduced. The process is 

semi-automatic and needs human intervention. Having the candidate FCBR relations (X, Y), The process recursively 

uses all the kind of relations Xis of X and Yis of Y and builds a matrix for them. Representing this matrix to the 

domain experts and asking for the suitable fuzzy weight assignment is the next step. 

An extended version of fuzzy description logic called ef-shin is introduced. Mapping of these three relations to ef-

shin is discussed. Because of the mapping provided, the method claims that it supports fuzzy reasoning. 

6.3.  Fuzzy Ontology Developing Methods 

 
As it can be seen in the previous section, fuzzy ontologies may have some fuzzy elements including fuzzy concepts, 

attributes, relations and axioms. In this section we described some popular learning methods used to extract the 

fuzzy elements.  



 

 

6.3.1. Extracting Fuzzy Attribute Value 

 

6.3.1.1. Abulaish and Dey(A) 

Abulaish and Dey [23] propose a fuzzy ontology generation framework in which a concept descriptor is defined as a 

fuzzy relation which encodes the degree of a property value, using a fuzzy membership function. This framework 

proposes to store concept descriptions in a <property, value, qualifier, constraints> form as an extension of the 

traditional <property, value, constraints> framework. Qualifiers are modifiers or hedges and are used to dynamically 

create new fuzzy sets and change the meaning of linguistic variables. They are extracted through text-mining or are 

defined by domain expert. A fuzzy mechanism for integrating new qualifiers to the set of original ones is also 

presented. 

In Dey and Abuliash [31] this framework is used to enhance an existing crisp ontology with fuzzy property 

descriptors gotten through rule based in combination with NLP text mining.  

Gathering the information to enhance an existing ontology needs to locate concepts, properties and relation from 

free-form text. For this purpose, some rules are defined. In the rules, adjectives model properties, adverbs model 

qualifiers and verbs are relations between concepts. However, there could be numerous such elements in any given 

text obeying these rules, not all of them necessarily are relevant, so lexical patterns are identified for recognizing 

ontological concepts from text. They employ SPAM algorithm to mine such structures from annotated text. Patterns 

like “determiner, adjective, noun” or “noun, verb, preposition, noun” are defined. So first they find components 

which match the patterns and second they try to find appropriate match in the ontology. If a match is not found, the 

pattern is stored for verification. Otherwise, the pattern is accepted as an information component.  

The proposed fuzzy ontology structure is applied in a text information retrieval application. For matching a pair of 

<value, qualifier> tuples, the overall effect is also influenced by the distance between the qualifiers as it is 

influenced by the distance between value pairs.  

6.3.2. Extracting Fuzzy Relations  

 
In this section we divide methods into two categories. Methods that make fuzzy taxonomic relations and methods 

that make fuzzy non-taxonomic relations. 

6.3.2.1. Fuzzy Taxonomic Relation 

The following two methods are discussed. 



 

 

6.3.2.1.1. Lau and PASS 

Widyantoro and Yen [62] describe the PASS (Personalized Abstract Search Service) system. The system uses a 

fuzzy ontology of term associations to support information retrieval. The fuzzy ontology is automatically built using 

information obtained from the system’s document collection. The system first extracts a set of two or three 

consecutive words with patterns like (noun/adj) (noun/noun noun) or (adjadj noun). It uses WordNet to tag each 

word. Then the system eliminated two or three word phrases which include at least one word not contained in a 

predefined control list. Making fuzzy taxonomic relations between terms is done next. Two taxonomic relations 

narrower than (NT(ti,tj)) and broader than ( BT(ti, tj)) are introduced and the fuzzy conjunction operator of term 

frequencies is applied to compute the membership values of the term relations in the following manner. 

Let C = ( a1 , a2  ,a3 , …, an ) be a collection of articles, where each article  A= (t1,t2, t3,..) is represented by a set of 

terms tj and let occur(tj, a) denote the occurrence of term tj in article a. The membership degree of μoccur(tj,a) is 

defined by f(|tj|) 

μOccure(tj,a)=µ (tj,a)=f([tj]) 

where f is defined with term’s frequency of occurrence . The membership of μ���t�, t�� is defined in this way  

μ���t�, t�� =
∑ μ�����(��,�) ∪ μ�����(�,�)�∈�

∑ μ�����(��,�)∪�∈�

 

And the following equation is used. 

µBT (ti,tj) =  µNT (tj,ti) 

Two additional steps for eliminating redundant relations are done. In the first step, the system does α cut on 

relations. Then, from the two NT(ti, tj), BT(ti, tj) relations, the relation with smaller value is eliminated. In the second 

step, looking for indirect path NT(ti,tm1), NT(tm1,tm2), …., NT(tmn,tj) is done. If the path is find, on the condition that 

the value of NT (ti,tj) is less than the minimum value in the finding path, the relation NT (ti,tj) is eliminated without 

losing any information.. 

The work of Lau [24] is another research which makes a taxonomy of concepts. The method is very much similar to 

the method adapted in PASS. The difference is that this method uses a context vector for representing each concept.  

 The method does a pre-processing step which includes Stop words removal, part of speech tagging, stemming. 

Then, a windowing process with term size 5 to 10 is conducted over the corpus. Some patterns like “Noun Noun” 

and “Adjective Noun” are defined for filtering noisy patterns. After parsing the whole corpus, a statistical token 

analysis step use information theoretic measure to compute statistics of the linguistic patterns.  



 

 

Several measures including Mutual Information (MI), Jaccard (JA), conditional probability (CP), Kullback-Leibler 

divergence (KL), and Expected Cross Entropy (ECH) are introduced for computing context vector of concepts. 

These statistics are used to define potential concepts. If the association weight between a concept and a term is 

below a predefined threshold value, the term will be discarded from the context vector of the concept. 

Finally, fuzzy memberships for the taxonomy of domain concepts are assigned according to the fuzzy conjunction 

operator (like defined for PASS) over the terms of the concepts’ context vector. Let Spec(cx,cy) denote that concept 

cx is a subclass of another concept cy. The degree of such a specialization relation can be estimated from 

����
���, ��� ≈ �������, ��� =

∑ ���
(�)⨂����

(�)�∈��∩��

∑ ����
(��)�∈��

 

Similar approached is applied in [63-65]. 

6.3.2.1.2. Chien and Hsu 

Chien and colleagues [66] propose an agglomerative clustering scheme based on fuzzy theory to generate 

hierarchical fuzzy concepts from a large database automatically. 

The proposed method generates hierarchy of concepts with the number of layers equal to the number of attributes in 

the data base. The method starts with database entities as the last layer of the hierarchy. Then a clustering algorithm 

is applied to the primary objects to find meaningful fuzzy concept hierarchies effectively. 

The first part of the method is transforming quantitative data in database entities into linguistic terms using fuzzy 

membership functions defined for their attributes. Figure 6 shows the membership temperature and humidity. Table 

1 shows a snap-shot of an example database with 5 attributes outlook, temperature, humidity, windy and play. 

As the number of attributes is 5, the hierarchy has 5 layers. In the lowest layer concept C5
i represents a direct entity 

xi in database. For example  

C1
5= ((0/O+0/R+1/S), (1/H+0/M+0/L), (0.65/H+ 0.35/L), (0/T+1/F), (0/Y+1/N)) 

which shows that object C1
5 has value 1 for linguistic value high, and value 0 for linguistic values medium and low 

for attribute temperature. Other values have the same interpretation. 

 



 

 

 

Figure 6- Membership functions of Humidity and Tempreture[66]. 

Table 1-A snap shot of three objects of the data base [66]. 

data outlook temperature humidity windy play data 

X1 sunny 85 85 false no X1 

X2 sunny 80 90 true no X2 

       

X14 rainy 71 91 true no X14 

 

The algorithm performs an iterative method to reduce the number of attributes. In each layer an attribute should be 

omitted. A notion of fuzzy entropy is applied for evaluating significant order of attributes which is determined as 

follows. 

�(�) = � � �
���

����∈��
��∈�

× ���(�) × ���
�

�

���
�∈�

 

where μij (x) is the membership value of object x on the j-th linguistic term of i-th attribute( tij) and vij is equals to 

the summation of μ ij (x) for all x ∈ X, that is 

��� = � ���
�∈�

 (�) 

The fuzzy entropy is used to decide which attribute should be omitted for the construction of the upper layer 

concepts. The attribute which make the entropy smaller should be omitted. Table 2 shows 5 sets of attributes with 4 

attributes are possible. Calculating the entropy for them shown in table 3, states that B1 should be selected. 

Table 2-5 number of 4 attribute sets 

{B1} = {temperature, humidity, windy, play} {B2} = {outlook, humidity, windy, play} 

{B3} = {outlook, temperature, windy, play} {B4} = {outlook, temperature, humidity, play} 

{B5} = {outlook, temperature, humidity, windy}  

 

 



 

 

Table 3-The calculated entropy for eliminating one of the attributes in layer 5 [66]. 

E({B5})=28.26 E({B4}) =27.76 E({B3}) =27.64 E({B2}) =7.50 E({B1}=27.23 

 

The next part is merging the concepts of 5th layer for making the concepts of layer 4. The strategy for doing so, is 

merging concepts which have the same maximum linguistic value, for their linguistic variable. So the above 

example concept C2
5,C5

14 (objects corresponding to entity x2 and x14 in database) are merged as they both have 

Medium for their temperature, high for their humidity, T for windy and N for Play as their linguistic value with the 

maximum membership degree (Table 4).  

For generating the membership of the combined concept, the minimum value is selected. So, concept C1
4 has the 

following form.  

C14 = (*, min(0/H, 0.5/H)+min(0.64/M, 0.5/M) +min(0.36/L,0/L), min(0.84/H, 0.81/H) +min(0.16/L, 0.19/L), 

min(1/T, 1/T)+ min(0/F, 0/F), min(0/Y,0/Y)+ min(1/N,1/N)). 

Table 4-The linguistic values of database entities [66]. 

data Outlook temperature Humidity Windy play 

X1 0/O+0/R+1/S 1/H+0/M+0/L 0.65/H+0.35/L 0/T+1/F 0/Y+1/N 

X2 0/O+0/R+1/S 0.5/H+0.5/M+0/L 0.81/H+0.19/L 1/T+0/F 0/Y+1/N 

      

X14 0/O+1/R+0/S 0/H+0.64/M+0.36/L 0.84/H+0.16/L 1/T+0/F 0/Y+1/N 

 

Then f(Ck
l-1,Ck

l) is computed to  represent the degree of the sub-sumption of concept Ck of Layer l-1 to the concept 

Ck of layer l. 

�(��
���, ��

� )=
∑ ∏ (���������

������������
� �)���∈��

��∈�

|�|
 

Where μ ij( C lk) is the membership value of the fuzzy concept C lk to the j-th linguistic term of i-th attribute, tij.  

There are other researchers on Fuzzy ontology generation from relational databases. Lv and colleagues [67] present 

a fuzzy ontology generation framework which generates fuzzy ontology from relational databases. The research 

does not talk about the method of mapping but about representing the fuzzy ontology. They propose fuzzy version of 

DLR called FDLR to represent fuzzy ontology. DLR is a special kind of description logic that has the ability to 

represent n-ary relations. Zhang and colleagues [68] propose an approach for constructing fuzzy ontologies from 



 

 

fuzzy UML models .Zhang and colleagues [69] propose a formal approach and an automated tool for constructing 

fuzzy ontologies from fuzzy Object-Oriented database (FOOD) models. Zhang and colleagues [70] propose an 

approach for constructing fuzzy ontologies from fuzzy relational data bases (FRDBs), and used the constructed 

fuzzy ontology to reason on FRDBs. 

6.3.2.2. Fuzzy Non-Taxonomic/Special Relations  

 

6.3.2.2.1. FIM 

Lee and colleagues [5] define a 7-layer Fuzzy Inference Mechanism (FIM) for fuzzifying an existing crisp ontology. 

They use a layered ontology of the Chinese news domain, in which each concept has a membership degree for its 

belonging to different news events. In crisp ontology, each concept fully belongs to a special event or not, but in the 

fuzzy case each concept has membership value for its belongings to each event. The relation between events and 

concepts is a “part-of “ (meronymy) relation. 

The inputs of fuzzy inference mechanism are meaningful terms of the domain with their belongings to various 

events. The classification of the terms is done by a term classifier module. A preprocessing mechanism which uses 

Chinese news dictionary generates meaningful terms based on the news corpus.  

Fuzzy inference mechanism follows a 7-layer architecture (Figure 7) to find the association between various terms 

of an event and the concepts. This association is then used to find membership degree of different concepts to 

different events.  

Three fuzzy variables, including Term Part-of- Speech (POS), Term Word (TW) similarity, and Semantic Distance 

(SD) similarity- defined by domain experts-are used to find association between terms and concepts. POS compares 

differences in the part of speech of concepts and term. Term word similarity is a function of equal number of words 

in two terms. For computing the semantic distance similarity, the domain ontology is defined as five layers, 

including the who layer, when layer, what layer, where layer, and how layer. According to the layer which terms 

belong to, their semantic distance is calculated. All these variables are defined as fuzzy variables with three 

linguistic values low, medium, high. Figure 8 shows this fuzzy value for fuzzy variable POS. 

A total criteria named term relation strength (TRS) is defined as a variable which integrates three other variables. 

Five linguistic values very-low, low, medium, high and very high are defined for TRS. Rules are defined for 

integrating values of POS, SD, TW to linguistic values of TRS. Table 5 shows some examples of the rules. For 



 

 

example, Rule 1 says that the output of POS-Low, TW-Low, SD-Low should be integrated to TRS-Very Low in 

Layer 4. 

Figure 7 shows the 7-layer steps which FIM follows. First layer is “input linguistic layer” which accepts term set of 

events and concept set of d the omain as input and sends them to 2nd layer. Next layer or “input term layer” performs 

the membership functions to compute the membership degrees of three variable POS, SD, TW. Third layer is “rule 

layer”. There, each node contains a fuzzy rule, which shows the way of linking 3rd layer nodes with the associated 

node of the fourth layer. “The output term layer” is the forth layer which performs the fuzzy OR operation to 

integrate the fired rules that have the same consequences to compute linguistic values of the fuzzy variable Terms 

Relation Strength (TRS). Fifth Layer, “The output linguistic layer” adopts the center of area (COA) method to 

perform the defuzzification process. This layer computes the TRS of the term and concept pair. The next two layers 

are summation layer and integration layer. 

The summation layer performs the summation process over the terms of event for computing the TRS values of 

concept and event pair. The output of this layer contains belongings of each concept to event 1. Finally, the 

integration layer will integrate the membership degrees of the concept that belongs to all events of the domain 

ontology.  

 

Figure 7-7-layer steps of FIM [5] 

 

Table 5- Selected fuzzy Rules of FIM’s Layer 3 

Nodes[5]. 

 

 

Figure 8-. POS triangular membership [5] 



 

 

 

6.3.2.2.2. Abulaish and Dey (B) 

One of the researches on extracting non taxonomic fuzzy relations is the work of Abulaish and Dey [21]. They 

propose a mechanism for extracting fuzzy relations through text mining. Membership values of relations are 

functions of frequency of co-occurrence of concepts in the relations. This research works with GENIA ontology and 

tries to enhance it with fuzzy relations by using the information extracted from MEDLINE documents. The method 

consists of four modules. 

The first two are doing a kind of preprocessing steps. The “Document Processor” module gets text documents which 

are tagged with ontology concepts and extracts sentences in them. “Relational Verb Extractor” is the 2nd module 

which uses NLP techniques to mine all relational verbs from the document. “Biological Tag Association Extractor” 

is the fuzzyfying module. It computes association between pairs of tags. This module uses term frequency (TF) and 

inverse document frequency for computing weight Wij of tag Ej in document Di as follows 

Wij = Eij×log(N/nj) 

where Eij is the frequency of the jth entity Ej in document di, log(N/nj) is the inverse document frequency of entity 

Ej, N is the total number of documents in the collection nj is the number of documents that contain the Ej. Then the 

strength of association between a tag pair Ej and Ek is computed with the conjunction operator as 

μ�E�, E�� =
∑ W�� ⊗ W��

�
���

∑ W��
�
���

 

where ⊗ denotes a fuzzy conjunction operator which is taken as a min operator in this case. A threshold value may 

be used to filter all associated fuzzy tag associations. The last module or “Fuzzy Biological Relation Extractor” 

identifies relations that have strength greater than specified threshold as “feasible fuzzy biological relations”. So, the 

same relational verb may be associated to multiple entity-tag pairs with differing strengths 

6.3.2.2.3. Parry 

Parry [22] states another approach to fuzzify relations for solving the problem of overloaded concepts for query 

expansion in medical information retrieval. Overloaded concepts are concepts which occur more than once in the 

ontology in different locations (Figure 9-right). When a user searches about an overloaded concept the problem is to 

determine which location of the concept was intended by the user. The idea for clarifying this task is to subgroup 

users according to their interest and assigns fuzzy weight special for each group. 



 

 

 

Figure 9.related term boxes (left), overloaded concept (right)[22] 

 In this approach, the ontology membership is normalized in a way that, for each of the terms in the ontology, sum of 

the membership values of the term be equal to 1. This is because of the methods’ primarily concern which is 

mapping from queries to the ontology. So, for each term in a query, only one of the meanings is required which are 

exclusive. The fuzzification method has two steps. In the first step all locations of the overloaded concepts are 

assigned equal membership values in a way that sum of their memberships be equal to 1. In the second step these 

memberships are updated by analyzing the corpus of a certain domain or by using relevance feed-back from users 

that share particular common interests. The following equation is used to find new memberships.  

μ��� = μ��� ± (�(μ� − μ���)�

Q����
�

�

) 

The membership values of any other equivalent terms are decreased or increased in proportional amounts in order to 

maintain normality.  

μ�(New) = μ�(Old) ∓ μ������. (
μ�(Old)

μ�(Old) + μ�(Old)
) 

Where μ������  is the change in µ1. For example, consider 3 locations for a particular term, (L1, L2, L3) with 

membership values  (µ1=0.6, µ2=0.3, µ3=0.1). If L1’s membership value is decreased to 0.5 The new values are 

(µ1=0.5, µ2=0.375, µ3=0.125). 

In analysis of the corpus, initial set of query terms is derived from the set of MeSH headings. These terms are fed 

into both GOOGLE (www.google.com) for the World Wide Web and PubMed (pubmed.gov) for Medline. The 

retrieved documents are processed. Each document retrieved was then searched for terms from the ontology. A 

weighting was introduced so that terms in the keyword section (PubMed) or meta tags (Google) were weighted as 3, 

terms in the title (PubMed) or headings (Google) were weighted as 2 and terms in the abstract (PubMed) or main 

body (Google) were weighted as one.  



 

 

A parent or child of a test term are called it’s “local term”. The following equation is used to compute the 

membership function for each different location of the query terms. 

���������� =
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���
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Where Li is the number of local terms discovered in each section of each document they are discovered, Wi is the 

weighting, Ai is the number of terms discovered and Wi is the weighting. 

In user feedback, the user performs a query and a set of documents is recovered. From the recovered documents the 

set of ontology terms are extracted and their affixes are removed. Then the user is asked to put them in the related 

boxes “Opposite”, “Not Related”, “Slightly Related”, “Moderately Related” and “Strongly Related”. Assigning the 

membership values of each  term in each location is based on the membership function shown in Figure 9(left).   

The query term is then compared to the terms in the “related terms boxes”. A score is calculated for each potential 

meaning of each query term by summing the membership values of terms in the “related terms boxes” that are 

related to each potential location of the query term. To calculate the membership value of the query term in a 

particular location, the following equation is used:  

������� =
∑ ��

���
�

�
 

Where µi is the membership value for each term the user has put into in the “related boxes”. Only terms that are 

parents or children of the preferred meaning of the query term are included in this part of the calculation. If a term 

from the retrieved document occurs more than once, then each instance of the term is included. The value n is given 

by the number of such terms, including duplicates. If the calculation yields a membership value less than 0 then the 

value is reset to 0. 

The result will be a fuzzy ontology that reflects the weights according to a user with a particular interest or 

document in a particular context of a domain. We call it context-dependent ontology. Similar approaches are applied 

in [71]. 

6.3.2.3. Fuzzy Taxonomic and Non-Taxonomic Relations 

 

6.3.2.3.1. FOGA 

Tho and colleagues [25] propose Fuzzy Ontology Generation framework (FOGA) based on fuzzy set theory and 

formal concept analysis (FCA). 



 

 

FCA defines formal contexts to represent relationships between objects and attributes in a domain.  Formal concepts 

are generated from the formal contexts, this research proposes a combination of fuzzy logic and FCA as Fuzzy 

Formal Concept Analysis (FFCA), in which the uncertainty information is represented by a real number of 

membership value in the range of [0 1]. So, the definition of formal context and formal concept are changed to fuzzy 

formal concept and fuzzy formal context.  

 Fuzzy Formal Context: A fuzzy formal context is a triple K = �G, M, I(G × M)�where G is a set of objects, 

M is a set of attributes, and I is a fuzzy set on domain G×M. Each relation(g, m) ∈ I has a membership 

value μ(g, m) in [0 1]. 

Each fuzzy formal context is a collection of objects called extent of the formal context and a collection of attributes 

as its intent. In contrast to crisp formal context, that each object has a special crisp value which is true(1) or false(0) 

for each attribute, in fuzzy formal context , each object then has a membership degree in [0 1] for each attribute.  

Table 6 shows an example of fuzzy formal context. Each document D1, D2, D3 has a membership value for each 

attributes “Data Mining”,” Clustering ”, ”Fuzzy Logic”. 

Table 6- Fuzzy Formal Context [25]. 

 Data Mining Clustering Fuzzy Logic 

D1 0.8 0.12 0.61 

D2 0.9 0.85 0.13 

D3 0.1 0.14 0.87 

 

 Fuzzy Formal Concept: Given a fuzzy formal context K = (G, M, I) and a confidence threshold T, The 

following two sets are defined  

A∗ = {m ∈ M|∀g ∈ A: μ(g, m) ≥ T} for A ⊆ G        B∗ = {g ∈ G|∀m ∈ B: μ(g, m) ≥ T} for B ⊆ M 

Fuzzy formal concept is a pair A� = (φ(A), B)where  B∗ = A , A∗ = B 

Each object g ϵφ(A) has a membership μg defined as: μ� = min���μ(g, m)where µ(g ,m) is the membership value 

between object g and attribute m defined in I. A formal concept is a collection of objects that have a collection of 

attributes in common and more than a predefined threshold T. Each object has a membership value to a special 

fuzzy formal concept that is the minimum of its membership to different attributes of that concept. Figure 10 shows 

the fuzzy formal concept of table 8 in contrast to the crisp formal concept. 



 

 

  

Figure 10-Formal concepts(left) and the fuzzy formal concept with confidence Threshold 0.5(right) [25] 

By using the fuzzy definition of concepts, similarity of two concepts is defined as the similarity of their attribute set. 

The similarity of two fuzzy sets A, B is defined as E(A, B) = �
�∩�

�∪�
� 

This similarity is then used for clustering of concepts. A conceptual cluster of a concept lattice K with a similarity 

confidence threshold T is a sub-lattice S(K) of K with two conditions. 

1. It has a supremum concept Cs that is not similar to any of its super-concepts 

2. Any concept C   Cs in S (k) must have at least one super-concept C ϵ S (k) so that Similarity (C, C’) > T 

Each object has a membership value for each of the conceptual clusters that is the minimum of its’ membership to 

concepts of that cluster.  

Hierarchical relation is then defined between conceptual clusters. A conceptual cluster L1 is a sub-concept of a 

conceptual cluster L2, if its supremum is the sub concept of any concept C� ∈ L�. Figure 11 Shows the conceptual 

clusters of Figure 10 with Threshold 0.4 and their hierarchical relations. 

  

Figure 11-fuzzy conceptual clusters of the concepts generated in figure 10 with T=0.4. (left) ,Hierarchical relations 

between conceptual clusters(Right)[25]. 

This hierarchy is used to make fuzzy ontology as in the crisp formal concept analysis. Each Object has a fuzzy 

membership degree for all of its attributes, a fuzzy membership degree for being in a concept or conceptual cluster. 

Each conceptual cluster has a fuzzy membership degree for being a sub-concept of another conceptual cluster. So, in 

this framework all the parts are fuzzy.  





 

 

FOGA also discusses about approximate reasoning for incremental enrichment of the ontology with new upcoming 

data. And a fuzzy-based technique for integrating other attributes of database to the ontology is proposed.  

FOGA has been applied for constructing scholarly ontology from citation database [25], generating machine service 

ontology for semantic help-desk [72] and Reuters News Topic Themes Ontology. There are some other researches 

on fuzzy FCA [73] [74].  

6.4. Developing Tools for Fuzzy Ontologies 

 
There are some tools developed for fuzzy ontologies too. Some examples are discussed here. 

Bobillo and Straccia [45] provide a Fuzzy OWL2 Protégé plug-in which uses OWL 2 annotation properties to 

encode fuzzy ontologies. Also they develop a parser for translating from OWL2 annotations representing fuzzy 

information into the language supported by some reasoners including fuzzyDL and DeLorean. 

Calegari and Ciucci [26] extend the KAON Project to introduce fuzziness in ontology. A fuzzy inspector composed 

of a table representing fuzzy entity, membership degree and number of updates (Q) is developed. This developing 

tool is based on their method that lets updating fuzzy numbers by query.  

Ghorbel and colleagues [75] introduce a fuzzy plug-in for Protégé 3.3.1.The plug-in allows the definition of 

parameterized membership functions and gives support to instantiate fuzzy concepts and roles. Also, it allows 

automatic computing of membership degrees and querying fuzzy ontologies based on fuzzy criteria.  

Slavíček [76] provides a library to integrate a fuzzy ontology with object-oriented programming (OOP) classes 

written in .NET. The implementation currently supports FuzzyOWL2 ontologies with FuzzyDL reasoned, but it can 

be modified to support any fuzzy ontology notation and fuzzy reasoner. 

7. Where Fuzzy Ontology Is Used? 

 
All the applications that handle vague knowledge may use fuzzy ontologies. One of the most important applications 

of fuzzy ontology is semantic web [25],[72] ,[77]. For example Tho and colleges [72] use a fuzzy machine service 

ontology in a semantic help-desk for supporting customer services over the semantic web environment. Zhai and 

colleagues [78] use fuzzy ontology to exchange and integrate fuzzy systems knowledge with other Semantic Web 

applications. It has been applied in social network content analysis which has been  

Another important application is information retrieval. [65], [79],[80],[81],[82]. As an example Parry [71] applies a 

fuzzy ontology in medical information retrieval. Zhai and colleagues use a fuzzy ontology for semantic query 



 

 

expansion in electronic commerce [34].Widyantoro and Yen [62] use an ontology of term associations for query 

refinement. Calegari and Loregian [79] use a special type of non-taxonomic fuzzy relations, called correlations for 

information retrieval. Lau and colleagues [65] use fuzzy ontology for the estimation of semantic granularity of 

documents to improve the effectiveness of IR.  

Some of the other applications which use fuzzy ontologies include news summarization [5], meaning-based NLP 

interpretation [83], data mining [84], personal diabetic diet recommendation [85], visual video content analysis and 

indexing [86],[4], document clustering [87], knowledge extraction [88], group decision making systems [4] and 

fuzzy system modeling[89]. 

Fuzzy ontologies also have been applied in different domains to represent uncertain knowledge, such as the domain 

of educational computer games[58] , the knowledge in an intelligent multi-cascade control system [90], fuzzy 

ontology of food [91] personal profile ontology [92], personal multimedia information [93], fuzzy ontology of 

computer threats [94].  

Fuzzy ontology has application in the area of ontologies too. Qui et al. [95] define a semantic similarity assessment 

based on fuzzy weights for modularization of ontologies. Abulaish and Dey [30] define a special metric called 

consistency which shows how consistent each concept is defined among different ontologies. Consistency is 

computed using a function of fuzzy weights of the relations of an entity to other concepts. It is used for providing 

interoperability among ontologies. 

8. How Fuzzy Ontology Is Evaluated? 

 
For evaluating fuzzy ontologies, most of the researchers evaluate the application which contains fuzzy ontologies or 

use the usual methods of evaluating crisp ontologies. To the best of our knowledge, the only research which is 

explicitly about evaluating fuzzy ontologies is the work of Ivanova [96].He propose a special metric defined in this 

way . 

K=∑ ��/�(����) –∑ 0.1/����� − log (��/�) 

Where pi is the value of probability of (sub) property of ontology element, which means what is the probability that 

this element locates in a right position, n is the number of all ontology terms, n1 is the number of all valuable domain 

terms, extracted from selected text documents, that aren’t ontology terms. Increasing metric values stands for well 



 

 

working of the learning process while decreasing means that it does not work properly. He does not talk about how 

the probability and user agreements are estimated. 

Also in [60] some criteria including correctness, accuracy, completeness and consistency are introduced for 

evaluating fuzzy ontology. The metric are discussed in section 6.1.1. 

9. Comparison 

 
All fuzzy ontology developing methods fuzzify some ontology elements according to their application needs. The 

fuzzy membership degrees are obtained from a source of knowledge which may be a classified term set or ontology 

based tagged document, etc. Having the source of knowledge, a preprocessing step may be needed to prepare the 

knowledge for computing the fuzzy membership degrees. Finally, the fuzzification is done with different methods. 

Thus, according to what they have and what they need, methods use different approaches for their fuzzification, and 

they are different in what they do, and how they do that. 

For comparing these methods, we adapt the framework introduced by Shamsfard and Abdollahzadeh [12] with some 

modifications. We change the dimension “learning element” to “fuzzy element” and we add fuzzy reasoning 

dimension to the framework. The dimension “Test and evaluation Environment” is also changed to “application-

domain”. Thus, we introduce a framework for comparing fuzzifng approaches according to the following six 

dimensions. 

 Fuzzy Element: Learning methods are different in their fuzzy element. Some of them make fuzzy taxonomic 

relations such as method in PASS, some make fuzzy non-taxonomic relations such as FIM. Some have fuzzy 

property descriptors as method proposed in Abulaish and Dey (A). 

 Starting point: This dimension talks about where the method begins the developing (what it has as the starting 

knowledge). It includes two parts. Input and starting knowledge. Developing methods are different in their 

starting knowledge; some methods have a crisp ontology for starting such as method in the Abulaish and 

Dey(A) and some others don’t have it, such as method in Lau and colleagues [24] . Some of them use a special 

kind of lexicons like WordNet such as PASS and others such as FIM may have a dictionary of words.  Social 

network data have recently been applied as a source of input for fuzzy ontology generation as well [97]; which 

has a wide range of application in other areas of Artificial Intelligence (e.g. [98]). Furthermore, methods are 



 

 

different in their input. They may use text or Input type may be structured, semi structured or unstructured. The 

input language is also different.  

 Pre-processing: This dimension answers if a pre-processing step is needed for transforming the input to the 

format for the beginning of learning. For example FOGA works with a cross table of words in the domain so a 

preprocessing for preparing the input is required or Lau and colleagues [24] does a linguistic preprocessing (pos 

tagging, stemming, stop word removal). 

 Result: This dimension discusses about how rich the result of a method is. Some of them give methodology for 

developing fuzzy ontology manually, some other methods give a model or framework as their result (we 

mention them as manual or semi-automatic methods in this paper) and others give ontology as their result, 

which are different in their type, structure and representing language. The type of the ontology may be domain 

specific, general or context dependent. Some has layered structure. The representation language for the 

developed fuzzy ontology is also different.  

 Learning method: Their learning methods are also different in their process, approach and level of automation. 

The approach may be statistical, linguistic, rule based or fuzzy. The process will also be different. Some do 

clustering, others may use statistical analysis. Automation levels are fully automatic, semi-automatic or manual. 

The special point about learning methods is that when we are talking about learning methods we mean just 

learning fuzzy memberships. All the other operations are gone to the pre-processing step. For example, 

Abulaish and Dey(B) make fuzzy non-taxonomic relations with respect to a crisp ontology. Some linguistic 

operations are done for tagging the documents. These steps are taken as a part of pre-processing dimension. 

 Application and the domain/ Evaluation and test environment: This dimension talks about the application and 

the domain the fuzzy ontology is applied to. 

 Fuzzy reasoning: Most of these methods are using fuzzy weights to make fuzzy ontologies and don’t provide 

fuzzy reasoning on it. But a few support some kinds of reasoning such as FOGA which provides approximate 

reasoning and Gu and colleagues [61] which talks about a description logic which fits their model. 

 In Table 73.we compare learning methods discussed in this paper according to these dimensions.  

 

 
3none means it does not have a meaning here, not available means it was not discussed, not specific means it makes no difference.     



 

 

Table 7. Comparison of developing methods 
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10.  Conclusion and Future Work 

In this paper, we surveyed the field of fuzzy ontology and its development. It was stated that fuzzy ontologies are 

needed because of the vagueness inherent in some real-world domains, the requirement of some applications and 

differences in expert’s conceptualization of a domain. Then some different definitions of fuzzy ontologies were 

proposed. It was discussed that due to the requirements of the application which uses fuzzy ontologies, different 

elements could get fuzzy. A comprehensive definition for the fuzzy ontology was provided too. 

Then, fuzzy description logic was discussed as a theoretical counterpart of fuzzy ontologies and introduced as a 

good candidate for representing and reasoning of fuzzy ontologies. Anyway, none of the representation methods are 

a standard one. 

After that, different approaches for developing fuzzy ontologies were discussed and compared according to the 

proposed framework. The proposed framework compares developing methods based on their fuzzy element, starting 

point, preprocessing, result, learning method, application and evaluation domain and supporting of fuzzy reasoning. 

However, there are still no fully automatic methods for developing fuzzy ontologies. Most of the developing 

methods are domain specific. They make little sense in directing the construction of fuzzy ontologies in other 

domains. Most of them use statistical method for fuzzification and little rule based or linguistic methods are used for 

fuzzification. They fuzzify elements according to their application requirements. Some methods use a crisp ontology 

as a starting knowledge and the fuzzification method is dependent to the structure of the underlying crisp ontology. 

Most of them do not contain fuzzy entailment or fuzzy representation of ontologies. 

One of the most important applications of fuzzy ontologies is qualitative (approximate) reasoning. For a system to 

be able to reason with quality, having a fuzzy ontology is a good idea. However, there should be a method which 

can map quantitative element to their qualitative parts. 

Finally, some applications of fuzzy ontologies and researches on evaluating them were introduced. 
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