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ABSTRACT. Recognizing causal elements and causal relations in text is one of the challenging issues in 
natural language processing; specifically, in low resource languages such as Persian. In this research 

we prepare a causality human annotated corpus for the Persian language which consists of 4446 

sentences and 5128 causal relations and three labels of cause, effect and causal mark - if possible- are 
specified for each relation. We have used this corpus to train a system for detecting causal elements’ 

boundaries. 

Also, we present a causality detection benchmark for three machine learning methods and two deep 

learning systems based on this corpus. Performance evaluations indicate that our best total result is 

obtained through CRF classifier which has F-measure of 0.76 and the best accuracy obtained through 
BiLSTM-CRF deep learning method with Accuracy equal to %91.4. 

Keywords: PerCause, Causality annotated corpus, causality detection, deep learning, CRF 

1. Introduction 

Causal relation extraction is a challenging natural language processing (NLP) open problem 

that mainly involves semantic analysis and is used in many NLP tasks such as textual 

entailment recognition, question answering, event prediction and narrative extraction. 

Causation indicates that one event, state or action is the result of the occurrence of the other 

state, event or action. Consider the following examples: 

(1) John is poisoned because he ate a poisonous apple. 

(2) It’s raining. The streets are slippery. 

(3) Narrow roads are dangerous. 
(4) The poisonous apple poisoned Snow White.  

(5) The kid playing with the match burned the house. 

They all indicate a causal relation. A causal relation usually consists of three elements of cause, 

effect and causal mark. For example, in (1), "john is poisoned" is the effect of "he ate a 

poisonous apple" and "because" is the causal mark. As we can see in the above examples, the 
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causal elements may be words, phrases or predicates and also would occur in one sentence or 

two.  

Causal relations can be categorized from different points of view; e.g. according to the 

appearance of causal mark in the sentence. The causal mark may appear in the sentence or not 

and in the case of appearance it may be ambiguous or not. For example, in (3), "danger" is the 

effect of "narrow roads", but we do not have any explicit causal mark. Or in (4), the causal 

mark (“after”) would be ambiguous as it is not always an indicator of causality. 

On the other hand, the causative constructions may be either explicit or implicit (Girju, 2003). 

Even cause or effect may be expressed implicitly in a causal sentence. E.g. in (5) “kid playing 

with the match” is not the reason of burning the house, the fire is the reason. So finding the 

exact boundaries of causal relations is very important and challenging and needs world 

knowledge.  

Recognition of causal elements can be done through rule-based methods or machine learning 

ones that need tagged corpus.   

In general, it seems that corpus-based approaches are well suited for such problems (Goyal et 

al., 2017).  Corpus-based causal detection systems are meant to determine the borders of each 

causal element within a single sentence or a sentence pair and classify them into predefined 

categories of cause, effect and causal mark. Causal training corpora already exist in languages 

such as English (some of them are introduced in section 2), but to the best of our knowledge 

such corpora are not developed for Persian. In this paper, we present a causality annotated 

corpus in Persian (PerCause) and a benchmark for training models based on the created dataset 

PerCause covers simple and general causation and complicated ones such as metaphysical 

causations, or weak, negated or nested causal relations are not in our scope. 

This paper is organized as follows. Section 2 reviews related work, in section 3 we introduce 

Persian causality annotated corpus (PerCause) and explain the details of its production 

procedure. In section 4 we incorporate different machine learning and deep learning methods 

to extract causal relations based on PerCause and finally in section 5 the details of evaluations 

and discussion of the paper are presented. Section 6 concludes the paper. 

2. . Related work 

Here we review related researches in two main categories: 1) causality detection methods that 

may lead to semi-automatic development of a corpus and 2) manual creation of causality 

annotated corpora. 

2.1 Causality detection  

Causal relation extraction can be done through two approaches: rule based methods and 

machine learning methods. Some researchers use linguistic patterns to identify explicit 

causation relations. For example, Garcia (1997), employs a semantic model which classifies 

causative verbal patterns (as linguistic indicators such as <NP1 causative verb NP2>) to detect 

causal relationships in French texts. Khoo and colleagues (2000) use predefined verbal 

linguistic patterns to extract cause-effect information from business and medical newspaper 

texts. Lou and colleagues (2016) propos a framework that automatically harvests a network of 

causal-effect terms from a large web corpus using specified patterns (such as A leads to B, or 

If A Then B). Backed by this network, they propose a metric to model the causality strength 
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between terms. In this method, causal relationships in short texts are identified using the created 

resource and also the presented statistical criteria. 

Causality extraction by machine learning needs a causality corpus which is prepared manually 

or semi-automatically based on particular patterns. For example, in (Girju, 2003) a training 

corpus, containing sentences having 60 simple causal verbs is created using a LA TIMES 

section of the TREC 9 text. Using a syntactic parser, 6523 relations of the form NP1-Verb-NP2 

are found, from which 2101 are manually tagged as causal relations and 4422 as non-causals. 

These make the positive and negative examples used to train a decision tree classifier to classify 

causal and non-causal relations in text.  

Chang and Choi (2005) come up with a workaround mechanism to learn cue phrase and lexical 

pair probabilities from raw and domain-independent corpus in an unsupervised manner. They 

use these probabilities to extract inter-noun and inter-sentence causalities. In 2008, Blanco and 

colleagues (Blanco, et al., 2008) followed up with a work that considered explicit causal 

relations expressed by the pattern VerbPhrase-Relator-Cause, where relator ∈ {because, since, 

after, as}. They used semantically annotated SemCor 2.1 corpus for training a C4.5 decision 

tree binary classifier with bagging. 

Mirza and Tonelli in 2014 present CATENA, a system to perform temporal and causal relation 

extraction and classification from English text. To do this, they exploit the interaction between 

the temporal and the causal relations. They use a hybrid approach combining rule-based and 

supervised classifiers for identification of causal relations and adopt the notion of causality 

proposed in the annotation guidelines of the CausalTimeBank (Mirza et al., 2014; Mirza and 

Tonelli, 2014). This guideline accounts for CAUSE, ENABLE and PREVENT phenomena. Authors 

aim to assign a causal link to pairs of events when the causal relation is expressed by affect, 

link and causative verbs (CAUSE-, ENABLE- and PREVENT-type verbs) or when the causal 

relation marked by a causal mark 

Mirza (2014) have proposed annotation guidelines for causality between events, based on the 

TimeML definition of events, which considers all types of actions (punctual and durative) and 

states as events. They introduced the <CLINK> tag to signify a causal link and also introduced 

the notion of causal signals through the <C-SIGNAL> tag. 

Ning, et. Al (2018) claim that because a cause must occur earlier than its effect, temporal and 

causal relations are closely related and one relation often dictates the value of the other. So they 

present a joint inference framework for them, using constrained conditional models (CCMs), 

specifically, formulate the joint problem as an integer linear programming (ILP) problem, 

enforcing constraints that are inherent in the nature of time and causality. 

In (Dasgupta, et, al, 2018) a linguistically informed recurrent neural network architecture (a 

bidirectional LSTM model enhanced with an additional linguistic layer) for automatic 

extraction of cause-effect relations from text is proposed. The architecture uses word level 

embeddings and other linguistic features to detect causal events and their effects mentioned 

within a sentence.  

And finally in (Hashimoto, 2019) a weakly supervised method for extracting causality 

knowledge (such as Protectionism -> Trade war) from Wikipedia articles in multiple languages 

is presented. The key idea is to exploit the causality describing sections and multilingual 

redundancy of Wikipedia. 

2.2 Manually annotated causality corpora 

There are several manual annotated resources for causality. Verb resources such as VerbNet 

(Schuler, 2005) and PropBank (Palmer et al., 2005) include verbs of causation. Likewise, 
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preposition schemes (e.g., Schneider et al., 2015, 2016) include some purpose- and explanation 

related senses. But these cases just cover specific classes of words. 

Up to the best of our knowledge there is no causality annotated corpus for the Persian language. 

But there are few causality manual annotated datasets for English language such as: BECAUSE 

(The Bank of Effects and Causes Stated Explicitly) (Dunietz, et al., 2015), BioCause (Claudiu 

et al, 2013), CaTeRS (Mostafazadeh et al., 2016) and (Dunietz, Levin and Carbonell, 2015). 

BECAUSE distinguishes three types of causation, each of which has slightly different 

semantics: Consequence, in which the cause naturally leads to the effect (e.g. We are in serious 

economic trouble because of inadequate regulation.); Motivation, in which some agent 

perceives the cause, and therefore consciously thinks, feels, or chooses something (e.g. we 

don’t have much time, so let’s move quickly); and Purpose, in which an agent chooses the 

effect because they desire to make the cause true (e.g. coach them in handling complaints, so 

that they can resolve problems). 

 CaTeRS focuses on nine causal relations combined with temporal relation, including: cause’ 

(before /overlaps) ‘enable’ (before/overlaps), ‘prevent’ (before/overlaps), cause-to-end’ 

(before/overlaps/during). In fact, CaTeRS incorporates four causal relations of cause, enable, 

prevent, and cause-to-end while assuming in ‘A cause/enable/prevent B’, that A’s start is before 

B’s start, but there is no restriction on their relative ending. This implies that a cause relation 

can have any of the two temporal relations: before and overlaps. 

BioCause provides an annotation framework for causal relations in biomedical texts and marks 

the connective and argument spans and the direction of causality. (Dunietz, Levin and 

Carbonell, 2015) is a generalization of BioCause to broader domains and distinguishes four 

different types of causal relationships (Motivation, Inference, Purpose and Consequence).  

Besides English corpora, there are similar corpora for other languages. Rehbein and 

Ruppenhofer (2020) present a new resource for German causal language. The annotation 

scheme is adapted from (Dunietz et al. 2015), but with an extended set of arguments. This 

dataset includes 4,390 annotated instances for more than 150 different triggers. The annotation 

scheme distinguishes three different types of causal events (Consequence, Motivation and 

Purpose). They also provide annotations for semantic roles, i.e.  The cause and effect for the 

causal event as well as the actor and affected party. This research uses a BERT-based causal 

sequence tagger as the benchmark. 

Also Salford Arabic Causal Bank (SACB) corpus (Sadek and Meziane, 2018) is a new corpus 

dedicated to Arabic Causal relations. It includes a collection of annotated sentences each of 

which contains an instance of a causal particle. This corpus is annotated with instances 

containing words prefixed with certain proclitic along with cause and effect arguments.  
Statistics of these corpora are indicated in Table 1. The last row shows PerCause which is introduced 

in this paper to be compared to available corpora. 
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Table 1. Statistics of causality corpora 

 

Corpus 
No of causal 

relations 
Data Source Description 

Relation types 

BECAUSE 1803 
5380 sentences of NYTimes, Penn 

Treebank and other news articles 

consequence, motivation 

and purpose types for 

causal relations 
 

BioCause 851 
19 open-access full-text biomedical 

journals 

Event trigger, type, theme 

and cause for each relation 

CaTeRS 488 
320 stories (1,600 sentences) from 

the ROCStories corpus. 

four types of causal 

relations of cause, enable, 

prevent, and cause-to-end 

while assuming in ‘A 

cause/enable/prevent B’ 

Dunietz,  Levin 

and Carbonell, 

)2015) 

400 

1200 sentences from Washington 

section of the New York Times 

Corpus 

Motivation, Inference, 

Purpose and Consequence 

types for causal relation 

SemCore2.12 1068 352 texts from Brown Corpus  Causal/non-causal labels 

German causal 

corpus 
4,390 

150 text from two sources, (i) 

newspaper text from the TiGer 

corpus and (ii) political speeches 

from the Europarl corpus  

three different types of 

causal events (consequence, 

motivation and purpose) 

SACB 2162 

69573 tokens from arabiCorpus 

(Newspapers category containing 

approximately135 

million words of articles published 

between 1996 and 

2010 in different Arabic countries)  

Causal/non-causal labels 

PerCause 5128 

4446 sentences (129,000 tokens) 

from Bijankhan corpus and general 

books 

 Cause, Effect and Mark for 

each causal relation 

 

 

Also there are some causal domain specific corpora in biomedical domain which are dedicated 

to the diseases, symptoms and drugs such as CADEC (Karimi et al., 2015). This corpus consists 

of 1253 posts from AskaPatient Medical forum (7398 sentences) and determines drug, adverse 

effect, disease, symptom and finding in the text. There are other similar corpora (Leaman et al., 

2009, Gurulingappa et al., 2010 and Deleger et al., 2012) in this field that due to their specific 

domain and tags are not so related to our work and we just mention them. 

The other corpora related to causality are entailment datasets which include sentence pairs with 

entailment, contradiction or neutral relations. Causality is a form of entailment and so, some of 

the entailment relations in these datasets may be causality relation. For example, the sentences 

“John is not hungry anymore.” and “John just ate lunch” have both entailment and causal 

relations. 

 

                                                        
2 http://lit.csci.unt.edu/~rada/downloads/semcor/semcor2.1.tar.gz 
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The RTE3 Competitions corpus include test and development categories from 2005 to 2010. 

These competitions have continued as TAC4 and semEval competitions since 2010. SICK5 

corpus consists of 10,000 English sentence pairs, which are made up of two sources: 

ImageFlickr and SemEval2015 video descriptions, which are manually labeled with three 

labels of entailment, conflict, and Neutral.  

And finally Stanford University SNIL6 corpus consists of 500,000 pairs of the sentences, which 

is annotated manually in three categories of entailment, conflict, and Neutral. 

There are some issues with the corpora discussed in most of the above researches. The first one 

is that the authors assume that a causal element is continuous and there is no gap between its 

words but sometimes a causal element (e.g. cause) may be split into two or more parts (words 

or tokens) which are not neighbors in the sentence. The example is presented in table 3. 

Secondly the considered patterns are limited to just causal verbs as causal marks or a number 

of limited grammatical patterns. These may lead to some problems for free word order 

languages like Persian. For example, “سیگار احتمال سرطان را بالا می برد/smoking increases the 

possibility of cancer” is a causal sample that simple causal patterns cannot cover. 

In this paper, we discuss our methodology to prepare a causality corpus with two major 

properties: (1) there is no predefined limitation in grammatical patterns, this means that any 

causal pattern may occur in PerCause and (2) causal elements may have more than one part 

and the parts may have distance in the sentence so there is no limitation on their occurring 

location in the sentence.   The corpus is IOB-tagged (Ramshaw and Marcus, 1995) for causal 

elements. 

3. The causality annotated corpus  

PerCause, our developed causality annotated corpus, consists of almost 129,000 tokens and 

5128 causal relations. The initial dataset and tagset used in the corpus are introduced in the 

following subsections.  

3.1 Data source 

The initial corpus is selected among two different corpora: 1) Peykareh corpus and 2) Books 

corpus. Peykareh corpus (Bijankhan, 2005) consists of almost 10 million POS-tagged tokens 

(we just used the raw corpus). Although Peykareh corpus contains texts from different genres, 

news articles make the majority of it and as news articles often do not properly cover general 

causal elements, we gathered 10 Persian novels and general books and constructed a general 

corpus consisting 1.8 million tokens besides Peykareh corpus. The book corpus is not POS 

tagged and we used an automatic tagger (explained in section 4.2) when needed. 

3.2 Tagset 

As the concept of causality requires, the tagset contains 3 tags of "cause", "effect" and "causal 

mark". Due to the similarity of causality annotation to NER or chunking task, IOB format is 

                                                        
3 Recognizing Textual entailment 
4 Text Analysis Conference 
5 Sentences Involving Compositional Knowledge, available in: http://clic.cimec.unitn.it/composes/sick.html 
6 http://nlp.stanford.edu/projects/snli/ 
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selected for this task. Table 2 shows definitions and examples for the three tags. Some 

annotation examples are indicated in Table 3 and figure 1. 

Table 2. Tags definitions and examples 
 

Tag Definition Example 

Cause 

A person, event, action or thing that 

gives rise to an action, 

phenomenon, or condition. 

Smoking increases the risk of cancer. 

 .را بالا می بردسرطان ریسک  سیگار کشیدن

Effect 

A change which is a result or 

consequence of an action or other 

cause. 

Smoking increases the risk of cancer. 

 .را بالا می برد سرطان سکیرسیگار کشیدن 

Causal Mark 
A word or phrase which marks 

causal relation. 

Smoking increases the risk of cancer. 

 .برد یم بالارا سرطان ریسک سیگار کشیدن 

 

 

Table 3. Labeled data sample 

 کمبود هورمون کورتیزول باعث خشونت طلبی در برخی از پسران می شود، خصوصا در سنین نوجوانی.

<entity="cause-1>"کمبود هورمون کورتیزول</ entity> <entity="”Causal-mark-1>باعث</ entity>  < 

entity ="1-effect>" خشونت طلبی در برخی از پسران</entity >  ،می شود< entity ="1-effect>" خصوصا در سنین

 .entity >7/>نوجوانی

  
Cortisol hormone deficiency especially in teenage years, causes violence in some boys. 

<entity"=cause-1">Cortisol hormone deficiency </entity> <entity  "= effect-1"> especially in 

teenage years</entity>, <entity"=Causal-mark-1"> causes </entity> < entity  "= effect-

1">violence in some boys</entity>. 

 

 
Figure 1. IOB format sample 

 

                                                        
7  The Persian language is written from right to left 
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3.3 Semi-automatic preparation of initial causality corpus 

After preparing the initial raw corpus from the combination of Peykareh and the book corpora, 

we choose a subset of corpus for manual tagging through an automatic method. In this section, 

the processes performed to construct this subset called initial causality corpus are expressed. 

After applying these steps, the corpus is ready for IOB tagging and causal elements annotation.  

-Normalization 

As some characters in Persian keyboards have more than one corresponding Unicode (like ‘ی

’ and ‘ک’), in this step, characters are unified. 

-Sentence segmentation 

After normalization, text is segmented into sentences. We use punctuations such as “.”, ”!” and 

“?” as sentence delimiters while we concern using these symbols within special words (such as 

acronyms), numbers and URLs to avoid mis-segmentations.  

-Tokenization 

Tokenization converts each sentence into a sequence of tokens including words, punctuation 

marks, numbers, etc. As space is not a deterministic delimiter in Persian and it may occur within 

a word, or two separate words may appear without any space in between, tokenization is more 

challenging in this language comparing to English. In this stage, we use STeP-1 toolkit 

(Shamsfard et al., 2009) for tokenizing sentences. 

-Length filtering 

After segmenting the text into sentences and sentences into tokens, we remove very long and 

very short sentences and just keep sentences with length between 5 and 100 tokens. Our 

observations show that sentences with less than 5 or more than 100 tokens either does not 

contain any causal relation or are probably made by incorrectly merging or splitting of 

constituents and therefore can be ignored. Sentence loss rate is discussed at the end of this 

section. 

-Causal candidate selection 

Here, sentences that conform to predefined patterns of causality are called causal candidates. 

We select final set for manual labelling through this candidate set. In this regard, we developa 

list of 30 causal patterns (or somehow cue phrases), some of which are indicated in table 4. In 

table 4, # means that the pattern words should be seen in the defined order but, they may not 

necessarily make a phrase. 

At the first point, for making this list, we manually prepare two lists of 1) initial patterns 

(about 10 causal patterns) and 2) initial causal pairs (about 80 pairs of causes and effects). 

Then, we search initial causal pairs through the preprocessed corpora and extract sentences 

containing these causal pairs. On the other hand we search initial patterns in the corpus and 

extract more causal pairs from the extracted sentences. Thenrepeat the first step again with new 

extracted causal pairs and continue the iteration. The list of causal patterns came from 

investigating the structure of  sentences containing causal patterns one by one manually. The 

set of sentences that match the causal patterns are selected as initial causal candidates. This 

procedure is presented in Figure 2. 
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Figure 2. Pseudocode of causal candidate sentence selection for labelling 

 

-Final sentence set selection for tagging 

After preparing the initial causal candidate set, the extracted pairs are revised and inappropriate 

ones are removed  . In fact, some cause-effect pairs are not a permanent pair and just occurr to 

be causal in a specific sentencee.g. “He went to Paris because he was ill”.This kind of sentences 

in news articles are seen frequently. As we want the sentences to be general and have high 

accuracy in all contexts, we mainly are looking for examples that are direct cause of the effect 

in the sentence, so we inspect samples in the corpus and prune some patterns and select a final 

set for tagging. 

There is no sentence loss during the first 3 steps of preprocessing (Normalization, tokenization 

and sentence segmentation). But in the length filtering step we have about 10 percent loss. After 

causal candidate selection (6% of initial sentences have causal patterns), we select about 50 

percent of sentences as causal candidates having causal relations that always are hold. 

Table 5 shows the specification of the initial corpus before causal labelling. 

 

Table 4. Causal patterns examples 

 

Pattern 

category 
Patterns 

Percentage 

Verbs 
change, increase, lead to, raise, cause, produce 

(تغییر دادن، دنش#موجب، بالا بردن، منجر شدن، نافزایش داد، تولید کردن)  

23% 

Prepositions 
Through, if#then, because, as a result, since 

 (ز آنحایی کها ، زیرا، تیجه، درن نچواه، آنگ#گره، ابه وسیل)

5% 

Nouns 
Result, reason, cause 

 )حاصل، سبب، باعث، موجب(
45% 

Hybrid 

reason of %, because of, caused by, result of this, 

reason#percent, using#for, for this reason,  
high#probability, important#reasons, because of this 

،  درصد#علت، آن#این#حاصل، حاصل از، به دلیل، به علت، به این بابت،  %#علت)

،  افزایش#احتمال، دلیلبه همین ،  به همین علت، ناشی از،  استفاده#برای#از

 (به این دلیل، مهم#عوامل

27% 

 

 

 

1- Make initial pattern list and initial causal pairs list manually 

2- While any new causal pair or causal pattern is found 

a. search causal pairs list through the corpus and extract more causal patterns 

b. search causal patterns list in the corpus and find new causal pairs 

c. update both lists 

3- Select set of sentences that match the causal patterns as initial causal candidates for 
manual labelling. 
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Table 5. Specification of the corpus before manual causal labeling 

 

 # of sentences # of tokens 

initial causal candidate corpus  4446 129293 

 

3.4 Tagging the causality corpus 

After these steps, Sentences in this set are ready for being tagged  

For this task we developed an annotation tool to help linguists annotate the sentences manually. 

This tool allows the annotator to tag a multi-token element (even with distance in between) and 

can be used by multiple annotators simultaneously. A page of its GUI is shown in figure 3. 

Annotators can just right click on a phrase or word and select the corresponding tag. Also 

annotator can tag a multi part element using entity number option. After Annotation, data is 

converted to IOB format in internal structure for further use. 

 
 

 

Figure 3. GUI of annotation tool 

 

.  Table 6 shows statistics of causal tags (B-Cause, I-Cause, B-Effect, I-Effect, B-Mark and I-

Mark) in the corpus. We have about 63,000 causal tokens (tokens having causal tags) from 

133293 total tokens of the corpus in the form of 5128 causal relations (causal triples or tuples) 

in 4446 sentences. Some candidate sentences may contain no causal relation. 

 

3.5 Inter annotation agreement 

An important factor in developing a corpus, is the inter-annotator agreement. As discrepancy 

between different annotators is inevitable in manual annotation of a corpus and it is even 

observed in practice that an annotator would tag a single text differently at two different times, 

we need to calculate inter annotation agreement to be sure about the accuracy of annotation 

results. On the other hand, experiences have shown that use of more uniform and precise corpus 
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has led to better results in machine learning based systems. In this regard, different criteria are 

used to measure the degree of annotator agreement. One of the famous and widely used metrics 

for this issue is Kappa (Cohen, 1960). 

 

Table 6. Tag distribution in the corpus 

 
 tag Number of 

occurrences 

percentage 

1 B-cause  4261  

I-cause          19683 

Total cause 23944 %17.96 

2 B-Effect          4597  

I-Effect          27180 

Total effect          31777 %23.84 

3 B-Causal mark 5128  

I-Causal mark 2157 

Total causal mark 7285 %5.4 

4 Total tagged 63006 %47.27 

 
 

This criterion is a statistical criterion used in corpus linguistics to examine the degree of 

agreement between two annotators of a corpus. In this metric, attempts have been made to 

reduce the effect of labels which are appear to be accidentally similar to each other. For this 

purpose, kappa is calculated as follows.  

 

𝑘 =
Pr(𝑎) − Pr⁡(𝑒)

1 − Pr⁡(𝑒)
 

 
In this formula, Pr(a) is the correct level of similarity between two annotators, and Pr(e) is the 

rate of accidental similarity between the two annotator. To use the Kappa criterion in cases with 

more than two annotators, this value is calculated for each pair of annotators and their mean 

values are taken.  

In the field of linguistics, the kappa coefficients above 80% are considered to be appropriate 

for a corpus (Green, 1997). 

Here, for reducing ambiguities in labelling procedure, we have prepared a precise annotation 

guide and employed two annotators for the process. 1300 tokens of data are randomly selected 

and has been annotated twice. The inter-annotator agreement is calculated as 94.5% so the 

created annotated corpus is admissible and is now ready to be used by causality detection 

systems. 

4. Causal element boundary detection system  

In this research, the goal is to construct a causal corpus and to make a benchmark for detecting 

causal pairs and their boundaries using the constructed corpus. For this purpose, we use the 

created causal corpus to train machine learning baselines and deep learning systems and make 
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a benchmark in this task for research community. In this section we discuss the classification 

methods and features we employ to build the benchmark.  

In fact, we address the causal element boundary detection problem as a multi-class 

classification problem that its classes are causal elements tags. Hence this section explains the 

classification part and the features which are fed to the system.  

 

 4.1  Classification methods 

To develop the benchmark, a training dataset is separated and some classifiers such as Naïve 

Bayes, RBF (Radial basis function) and CRF are tested. Also we implemented two deep 

learning systems whit different representations; which are trained and tested using the same 

datasets.  

1) A deep learning framework8 (bi-LSTM+CRF in Tensorflow based on (Huang et. al, 2015). 

As is indicated in figure 4, the procedure is as followed: 

 
Figure 4. BI-LSTM-CRF model (Huang et, al, 2015) 

- Concatenate final states of a bi-LSTM on character embeddings to get a character-based 

representation of each word 

- Concatenate this representation to a standard word vector representation 

- Run a bi-LSTM on each sentence to extract contextual representation of each word 

- Decode with a linear chain CRF.  

In this step, for word embedding, fast-text CBOW method on Persian Wikipedia corpus with 

more than 1 billion tokens is used. 

 2) Due to the emergence of Bert9 models (Delvin, et al., 2018) and their positive performance 

in similar tasks, we fine-tune a pre-trained model on produced data as well.  

Our results and implementation details on general classifiers and deep systems are presented 

in section 5.2. 

4.2 Features 

To train causal element boundary recognition model, major features of word, stem and part-of-

speech tags have been used.  We use stem feature mainly for covering various verb inflections 

                                                        
8 https://github.com/guillaumegenthial/sequence_tagging 
9 BERT: Pre-training of Deep Bidirectional Transformers for Language 
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in sentences. Also sometimes placement of specific POS tags adjacent to causal mark indicate 

a causal relation pattern. So we use POS feature too. These features are fed into classifiers as 

feature functions in the train stage.  

We use two POS tagging models of 16-tags and 100-tags that were trained over Peykareh 

corpus with precision of 94% and 90% respectively. Also for stemming part, we use a light 

affix removal stemming algorithm which simply removes prefixes and suffixes. The effect of 

considering POS tags and stemmed words are evaluated in section 5.3.  

5. Experimental results 

5.1 Data and metrics 

For covering the effect of size of data in our analysis, we performed our experiments on two 

data sets considering available labelled data: 1) first data pack with 47000 tokens and 2) second 

data pack with 129000 tokens (including the first pack)  

For the first pack, we divide our tagged dataset into 3 parts of train, test and development with 

the portions of 80, 10 and 10 percent respectively. But for the second pack from non-

overlapping part, we just separate a development set and add the rest to the train dataset. We 

used the same test dataset which contains 4750 tokens. Also we used 10-fold cross validation 

procedure to ensure robustness of the results. 

Standard metrics of accuracy (Acc), precision (P), recall (R) and F-measure (F) are used to 

evaluate system performance which are defined as bellow. We calculate these metrics for each 

tag and consider the mean value of all 7 classes (B-Cause, I-Couse, B-Effect, I-effect, B-Mark, 

I-mark and O) for total comparison of systems. 

 

Accuracy(Acc) =
all⁡correct⁡system⁡decisions⁡for⁡specific⁡tag

all⁡samples
  

Precision(P) =
correct⁡system⁡decisions⁡for⁡specific⁡tag

all⁡system⁡decisions
  

Recall(R) =
correct⁡system⁡decisions⁡⁡for⁡specific⁡tag

what⁡system⁡should⁡have⁡decided
  

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃 ∙ 𝑅

(𝑃 + 𝑅)
 

 

 

5.2 Evaluation of different machine learning methods on the Causality corpora 

(PerCause) 

For General classifiers (RBF and Naïve Bayes) we used WEKA10 toolkit with their default 

parameters and we converted tokens to word vectors.  

For CRF classifier, we used PocketCRF and set f (frequency threshold) to 4 according to 

development procedure and set m=1and p=4 for performance improvement (m=1 uses less 

memory and p determines thread number). Also we tested different window sizes.  

                                                        
10 https://www.cs.waikato.ac.nz/ml/weka/ 
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In first deep learning implementation (bi-LSTM+CRF), we used 45 epochs, 100 dimensions 

for character embedding and 300 dimensions for word vectors.  

For second deep system (Bert-base), we used ParsBert (Farahani, et al., 2020) and fine-tuned 

the model with our causal data. For fine-tuning we used (weizhepei, 2020) implementation 

which is a PyTorch solution of Named Entity Recognition task with Google AI's BERT model. 

In weizhepei research, the F-measure result in NER task stated as 94.62 on Chinese MSRA and 

96.4 on English Conll2003 dataset. 

Tables 7 and 8 show the performance evaluation of different machine learning methods trained 

on the first and second data packs. Table 9 indicates best system results associated to different 

train data sets. 

 

Table 7. Comparison of ML systems performance for the first data pack (47000 tokens) 

 

System Precision Recall F-measure Acc 

CRF 0.77 0.75 0.755 0.747 

RBF Network 0.464 0.50 0.48 0.499 

Naïve Bayes 0.466 0.48 0.472 0.479 

Deep Learning (same train set) 0.65 0.52 0.58 0.86 

DeepLearning-ParsBert 0.64 0.71 0.67 0.88 

 

Table 8. Comparison of ML systems performance for second data pack (129000 tokens) 

 

System Precision Recall F-measure Acc 

CRF 0.799 0.72 0.761 0.755 

RBF Network 0.493 0.479 0.462 0.478 

Naïve Bayes 0.517 0.506 0.503 0.506 

Deep Learning (same train set) 0.79 0.65 0.713 0.914 

DeepLearning-ParsBert 0.66 0.77 0.706 0.89 

 

As table 7 and 8 indicate, if we consider total performance, the CRF system outperforms the 

other implemented systems with F-measure of 0.76 which is comparable to Girju (2003)’s 0.8, 

Chang and Choi (2005)’s 0.81 and Arabic ML system of (Sadek and Meziane, 2018) with best 

result of 0.76 on their own data. Details of CRF evaluation is presented in the next section.  

For deep systems, (Rehbein and Ruppenhofer, 2020) reached the average of 72.2 F-measure 

on determining causal labels in their German corpus which is comparable to our deep learning 

systems. Although in (weizhepei, 2020) Bert-based implementation on similar task (NER), the 

F-measure result stated as 94.62 on Chinese MSRA and 96.4 on English Conll2003 dataset 

which these results have definitely happened due to the large and rich corpus and possibly 

because of the absence of distant dependencies and non-breaking of entities into several parts. 

 

The main point which is indicated in the above tables is that increasing data size does not have 

any observable change in CRF results, but it improves deep learning results by 13% which is 

remarkable.  

In Bert based system, the final results are very close to other deep learning system, however 

the system performance with first pack and second data packs are nearly similar. This result 

confirms that Bert is functioning well with low data or the amount of data increase in the second 

pack has not been enough to improve the Bert system performance. In addition, it seems that 
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the presence of the CRF layer in other deep-trained networks has made it slightly superior in 

F-measure, at least in this volume of training data. 

5.3 Studying the effect of automatically extending the corpus  

In the previous section we saw that although deep learning has the best accuracy among other 

systems, its performance (according to F-measure) is less than CRF. As deep learning methods 

basically need large scale data, we decided to produce data automatically using our most 

accurate system (bi-LSTM+CRF architecture) to study the effect of automatically enlarging 

the corpus size. For this purpose, bi-LSTM+CRF is selected to generate the automatic data 

because accuracy is more important than recall here, so we labeled additional data 

automatically with deep learning system. 

 Then we used the output generated by the bi-LSTM+CRF system to create a corpus of 400,000 

tokens with accuracy of 0.91 (called automatic data pack). The new automatically generated 

data set is itself used to train a deep learning system. Data used for automatic annotation, is 

selected among Peykareh and news corpora and all sentences are from the same domain as 

PerCause. 

Table 9 shows the results obtained on different data sets. In this table, in the last three rows, 

we used the automatically generated corpus with accuracy of 91%.  

Table 9. Comparison of deep learning performance for different train data sets 

 
System F-measure Acc 

First data pack  0.587 86 

Second data pack 0.713 91.4 

Automatic created data pack 0.561 84.47 

First pack + automatic data pack 0.576 80.37 

second pack + automatic data pack 0.67 89.7 

 

As Table 9 indicates, adding automatically generated data did not improve system 

performance. This is probably because this produced data pack is not precise enough to use as 

training data. In future work to use this automatic database, we will consider weakly supervised 

methods. 

5.3 Best system evaluation 

As in the previous section has been showed, with current size of data, among all tested systems, 

CRF has the best total performance, although deep architecture has better accuracy. This result 

is mostly expected, because the CRF has shown the best F-measure as compared to other 

machine learning methods in such problems.  

In this section we study the effect of various features on the performance of CRF causality 

detection baseline, for each class. In the table 9 the results of CRF system without any 

additional features (just words and labels) and with two simple features is presented for each 

class. 
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Table 10. CRF system performance for each label according to features and window size 

 

Features Just words Words+POS+stem Words+POS+stem 

Window size 5 token 5 token 3 token 

Label/Metric P R F P R F P R F 

B-cause 0.755 0.57 0.65 0.72 0.65 0.68 0.75 0.69 0.68 

I-cause 0.598 0.59 0.59 0.61 0.71 0.66 0.62 0.65 0.63 

B-effect 0.80 0.68 0.74 0.82 0.72 0.77 0.82 0.69 0.75 

I-effect 0.79 0.73 0.76 0.84 0.74 0.79 0.79 0.71 0.75 

B-mark 0.93 0.84 0.88 0.96 0.92 0.94 0.92 0.86 0.89 

I-mark 0.82 0.69 0.75 0.71 0.77 0.74 0.66 0.77 0.714 

O 0.69 0.76 0.73 0.71 0.75 0.73 0.72 0.78 0.75 

Average 0.77 0.69 0.73 0.77 0.75 0.76 0.75 0.73 0.74 

 

It seems that changing the size of adjacency window in CRF classification procedure, can 

directly affect the performance. Our best result is obtained through 5 tokens window. We have 

repeated our experiments with and without POS and stem features.  

As table10 shows, adding POS and stem (Adding the stem feature slightly - by 0.5 units. - 

improves the total results.) Features improves system performance for 3 percent and our best 

performance is obtained for 5 tokens window.  

For better indication, in figure 5 and 6, two charts are presented so we can clearly compare 

results of CRF system according to window size and features. 

 

 

Figure 5.  CRF system performance; F-measure for each label in 5 tokens window and 

different features 
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Figure 6. CRF system performance; F-measure for each label in different size of window 

 

 

5.3 Discussion 

As we observe above, CRF method has the best total results (F-measure) among the other 

baselines. The CRF algorithm is based on the conditional probability and graph theory. In 

contrast to many other methods, the conditional random technique considers each sample in 

the context of the tags of previous words, rather than the sample alone. And it may be the 

strength of this method among others. Also in CRF system, experimental results indicate that 

window size and basic features (POS and stem) are two effective parameters that can improve 

system performance. 

On the other hand, we expected that deep learning method would have the best total 

performance, but probably due to the insufficient dataset the algorithm didn’t outperform the 

others, although it has the best accuracy of 91.4%. Experiments show that size of train data has 

an obvious effect on the results in deep learning system, because after increasing data size 

(nearly we added twice of initial size to the first pack) the deep system F-measure has increased 

by 13 percent, meanwhile it did not affect CRF performance so much. To sum up, it seems that 
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with small size of data it is better to use CRF classifier, but in the large scale data size deep 

learning would be a better choice. 

Also the automatically created train corpus, apparently mislead the deep network and didn’t 

lead to better results. Moving towards weak supervision may handle this issue. 

Since our initial corpus size is small for a learning procedure, we use a coarse grain data set in 

which all types are causality are integrated in a general label of “causal relation”. With bigger 

dataset we may have fine grain labels such as purpose and motivation in the future.  

6. Conclusion 

In this paper the production process of a Persian causal annotated corpus is presented. 

Furthermore, three machine learning methods are used for training a model for determining 

causal elements boundaries using this prepared data set. Among tested algorithms, CRF method 

with F-measure of 0.76 has the best total performance (according to F-measure), which is 

probably through its property of modeling context and not only the current sample. Meanwhile 

we also tested two deep learning architecture (a bi-LSTM+CRF and a Bert-base) which the 

first one has the best accuracy among other tested systems, but probably due to the insufficient 

size of data the total result (f-measure) is not as expected and unfortunately automatic generated 

data did not perform well too. 

As future work, adding post processing and manual modification of automatic-generated 

dataset or moving toward weakly supervised methods may improve the results.  Also adding 

other features may improve CRF system. 
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