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a b s t r a c t

The bee colony optimization (BCO) algorithm is proved to be one of the fast, robust and efficient global
search heuristics in tackling different practical problems. Considering BCO algorithm in this paper, we
utilize it for the data clustering, a fundamental problem that frequently arises in many applications.
However, we discovered some obstacles in directly applying the ancient BCO to address the clustering
problem and managed to change some basic behaviors of this swarm algorithm. In particular, we present
an improved bee colony optimization algorithm, dubbed IBCO, by introducing cloning and fairness
concepts into the BCO algorithm and make it more efficient for data clustering. These features give BCO
very powerful and balanced exploration and exploitation capabilities to effectively guide the search
process toward the proximity of the high quality solutions. In particular, the cloning feature allows it to
take advantage of experiences gained from previous generations when generating new solutions. The
problem of getting stuck in local optima still laid bare in the proposed improved version. As a result, to
overcome the shortage of this swarm algorithm in searching locally, we hybridize it with the k-means
algorithm to take advantage of fine tuning power of the widely used k-means algorithm which
demonstrates good result in local searches. We propose four different hybridized algorithms based on
IBCO and k-means algorithms and investigate the clustering results and convergence behavior of them.
We empirically demonstrate that our hybrid algorithms alleviate the problem of sticking in a local
solution even for large and high dimensional data sets such as document clustering. The results show
that proposed algorithms are robust enough to be used in many applications compared to k-means and
other recently proposed evolutionary based clustering algorithms including genetic, particle swarm
optimization, ant colony, and bee based algorithms.

& 2015 Published by Elsevier B.V.

1. Introduction

Clustering is one of the crucial unsupervised learning techniques
for dealing with massive amounts of heterogeneous information.
The aim of clustering is to group a set of data objects into a set of
meaningful sub-classes, called clusters which could be disjoint or not.
Clustering is a fundamental tool in exploratory data analysis with
practical importance in a wide variety of applications such as data
mining, machine learning, pattern recognition, statistical data analy-
sis, data compression, and vector quantization [88]. The aim of
clustering is to find the hidden structure underlying a given collection
of data points. In other words, in clustering, a set of patterns, usually
vectors in a multi-dimensional space are classified in such a way that

patterns in same clusters have more similarity to each other than the
patterns in different clusters [35,76].

Some of the most conventional clustering methods can be bro-
adly classified into two main categories [6,36]. The first category
includes the hierarchical clustering methods. A hierarchical algo-
rithm [30,41,68,96] creates a hierarchical decomposition of the given
dataset forming a dendrogram Na tree which splits the dataset
recursively into smaller subsets and represent the objects in a
multi-level structure. The hierarchical procedures can be further
divided into agglomerative or bottom-up algorithms and divisive or
top-down algorithms [87]. In the first category, each element is
initially assigned to a separate cluster, the algorithm then repeatedly
merges pairs of clusters until a certain stopping criterion is met [87].
On the other hand, the divisive algorithms begin with the whole set
of objects and proceed to divide it into a certain number of clusters
successively.

Our concern in this paper is based on partitioning clustering
[10] methods which include the most practical clustering algo-
rithms especially for large data sets. The attempt is to divide the
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data set into a set of disjoint clusters without the hierarchical
structure. Partitioning methods try to partition a collection of
objects into a set of groups, so as to maximize a pre-defined
objective value. The most popular partitioning clustering algo-
rithms are the prototype-based clustering methods where each
cluster is represented by the center of the cluster and the used
objective function (a square error function) is the sum of the
distances from the patterns to the center [64].

Although hierarchical methods are often said to have better
quality in clustering, they usually do not provide the reallocation
of objects, which may have been poorly classified in the early
stages of the analysis [36] and the time complexity of them
declared to be quadratic [42]. On the other hand, in recent years
the partitioning clustering methods showed a lot of advantages in
applications involving large datasets due to their relatively low
computational requirements [42,44]. The time complexity of the
partitioning technique is almost linear, which makes it widely
appealing in real world problems.

Among the partitioning clustering algorithms, especially the
center-based clustering algorithms, the k-means algorithm [57] is
most popular thanks to its simplicity and efficiency. Although the
k-means algorithm is simple, straightforward and easy to imple-
ment and works fast in most situations, it suffers from some major
drawbacks that make it inappropriate for many applications. The
first disadvantage is that the number of clusters K must be
specified prior to application. Also, since the summary statistic is
mean of the values for each cluster, so, the individual members of
the cluster can have a high variance and mean may not be a good
summary of the cluster members. In addition, as the number of
clusters grows, for example to thousands of clusters, k-means
clustering becomes untenable, approaching the Oðn2Þ comparisons
where n is the number of points. However, for relatively few
clusters and a reduced set of pre-selected words, the k-means
algorithm can do well [84]. Another major drawback of k-means
algorithm is sensitivity to initial centers. Finally, the k-means
algorithm converges to the nearest local optimum from the
starting position of the search and the final clusters may not be
the optimal solution [25].

In order to overcome these problems that exist in traditional
partitioning clustering methods especially k-means, recently, new
concepts and techniques have been proposed in this area by
researchers from different fields. One of these techniques is optimiza-
tion methods that try to optimize a pre-defined function that can be
very useful in data clustering. Optimization techniques define a global
function to capture the quality of best partitioning and try to optimize
its value by traversing the search space. Therefore different artificial
intelligence based clustering methods, such as statistics [24], graph
theory [93], expectation-maximization algorithms [65], artificial
neural networks [62,51,70], evolutionary algorithms [76,21,72],
swarm intelligence algorithms [83,71,39,73] have been proposed. In
principle, any general purpose optimization method can serve as the
basis for this approach. The methods such as genetic algorithm
[63,33,67], simulated annealing, ant colony optimization [79], particle
swarm optimization [18,71,50] and harmony search [25] have been
used for data clustering in the context of other meta-heuristics. Also
some algorithms based on the bees behavior have been proposed for
this problem such as honey bee [23,94,77], the bees algorithm [73],
and artificial bee colony algorithm [94,97,89,40]. Another swarm
intelligence algorithm based on the bees' behavior is bee colony
optimization [54–56] which is our focus in this paper to highlight the
power of this optimization algorithm in data clustering problem.

The BCO algorithm [54–56] is a nature-inspired meta-heuristic
optimization method, which is similar to the way bees in nature
look for food, and the way optimization algorithms search for an
optimum in combinatorial optimization problems. The perfor-
mance of the BCO algorithm has been compared with those of

other well-known heuristic algorithms such as genetic algorithm,
differential evolutional algorithm, and particle swarm optimiza-
tion algorithm for unconstrained optimization problems. The bee
colony algorithm has been very successful in a wide variety of
optimization problems [82] in engineering and control. In fact, in
optimization problems, we want to search the solution space and
in the BCO algorithm, this search can be done more efficiently.
Since stochastic optimization approaches are good at avoiding
convergence to a locally optimal solution, these approaches could
be used to find a globally near-optimal solution [45].

The BCO algorithm belongs to the class of population-based
techniques which is considered to be applied to find solutions for
difficult combinatorial optimization problems. The major idea behind
the BCO is to create the multi-agent system capable of efficiently
solving hard combinatorial optimization problems. These features
increase the flexibility of the BCO algorithm and produce better
solutions. The bee colony behaves to some extent similar and to some
extent in a different way from bee colonies in nature. They explore
through the search space looking for the feasible solutions. In order to
discover superior and superior solutions, artificial bees cooperate
with each other and exchange information. Also, they focus on more
promising areas and gradually discard solutions from the less
promising areas via collective knowledge and giving out information
among themselves.

As the behavior of the k-means algorithm mostly is influenced
by the number of clusters specified and the random choice of
initial cluster centers, in this study, we concentrate on the latter,
where the results are less dependent on the initial cluster centers
chosen, hence more stabilized by introducing different algorithms
based on the BCO for clustering. In summary, the present work
makes the following contributions:

� A basic bee colony based clustering (BCOCLUST) algorithm
which solves the clustering problem with the ancient BCO
method. This basic algorithm has some problems regarding
some basic behaviors of the BCO algorithm that causes the bees
to follow one solution after a while and get stock in a local
optimum.

� An improved BCO algorithm by introducing cloning and fairness
concepts into the BCO algorithm. These modifications are
aimed at increasing the explorative power of the BCO algorithm
and propagation of knowledge in an optimization process,
respectively. The second proposed clustering algorithm is based
on the improved BCO method and referred to as IBCOCLUST
which proposes a better modeling for the specific application of
clustering.

� Hybrid clustering algorithms using k-means and the IBCO-
CLUST algorithms. Although the problem of getting stuck in
the local optimum has been solved in the IBCOCLUST method,
the algorithm still suffers from locating the best solution in the
proximity of the found global solution. The hybrid techniques
alleviate this problem by combining the fine tuning capability
of the k-means in the proximity of global solution and the
searching power of the IBCOCLUST in locating the global
solution. The hybrid methods improve the k-means algorithm
by making it less dependent on the initial parameters such as
randomly chosen initial cluster centers, hence more stable. It
seems that the hybrid algorithms that combine two ideas can
result in an algorithm that can outperform either one indi-
vidually.

� To demonstrate the effectiveness and convergence rate of IBCO-
CLUST and hybrid algorithms, we have applied these algorithms on
various standard datasets and got very promising results compared
to the k-means and GA and PSO-based clustering algorithm [57,43].
BCO and PSO algorithms fall into the same class of artificial
intelligence optimization algorithms, population-based algorithms,
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and they are proposed by inspiration of swarm intelligence. Besides,
comparing the BCO algorithm with the PSO algorithm, the perfor-
mance of BCO algorithm is also compared with a wide set of
classification techniques that are also given in [82].

� Also having in mind that document clustering is one of the
major challenges in information extraction, to better evaluate
the functionality of our proposed algorithms, we apply them on
this important application as well. The evaluation of the
experimental results based on accuracy, robustness, and con-
vergence rate shows considerable improvement and robust-
ness of the hybridized algorithms for large scale document
clustering.

Outline: The paper is organized as follows. We begin in Section 2
by thoroughly surveying the related works that are mostly aligned
to our work. In Section 3 we provide background on the basic
algorithms including the clustering problem and the principles of
BCO meta-heuristic. The basic BCO based clustering algorithm, the
improved BCO algorithm along with the hybrid algorithms are
discussed in Section 4. Section 5 presents the data sets used in our
experiments, empirical study of BCO parameters on convergence
behavior of the BCOCLUST algorithm. It also contains the perfor-
mance evaluation of the proposed algorithms compared to well-
known algorithms. The experiments and analysis of the proposed
algorithms on the application of document clustering is also
presented in Section 6. Finally Section 7 concludes the paper.

2. More related work

Earlier in the introduction, we discussed some of the main lines
of research on clustering; here, we survey further lines of study
that are directly related to our work on meta-heuristic based
clustering algorithms.

Genetic algorithm based clustering: The genetic algorithm (GA)
is inspired by the theory of natural selection and begins with a
population of solutions which tries to survive in an environment
(defined with fitness evaluation). The parent population shares
their properties of adaptation to the environment to the children
with various mechanisms of evolution such as genetic crossover
and mutation. The process continues over a number of generations
to find a desirable solution [28].

The GA has been extensively utilized for clustering problem.
The paper [7] was among the first initially proposed the use of
basic GA for partitional clustering and in particular document
clustering [11]. The standard binary encoding scheme with a fixed
number of cluster centers is used for initialization of chromo-
somes. The reproduction operation is carried out using uniform
crossover and cluster-oriented mutation (altering the bits of binary
string). Ravindra Krovi [47] investigated the potential feasibility
of using genetic algorithms for the purpose of clustering. A novel
hybrid genetic k-means algorithm, dubbed GKA, proposed by [45],
which finds a globally optimal partition of a given data into a
specified number of clusters. This hybrid method circumvents
expensive crossover operations by using a classical gradient
descent algorithm that is used in clustering using the k-means
algorithm. Using finite Markov chain theory, it was proved that the
GKA converges to the global optimum. The fast genetic k-means
algorithm [52] (FGKA) was inspired by GKA but features several
improvements over GKA. The incremental genetic k-means algo-
rithm (IGKA) [53] was an extension to previously proposed FGKA
clustering algorithm. IGKA outperforms FGKA when the mutation
probability was small. The main idea of IGKA was to calculate
the objective value total within-cluster variation and to cluster
centroids incrementally whenever the mutation probability was

small. IGKA inherits the salient feature of FGKA of always conver-
ging to the global optimum.

Ant colony based clustering: The ant colony optimization (ACO)
algorithm is inspired by ants behavior in determining the optimal
path from nets to the source of food [19]. The clustering problem
in its optimization formulation can be solved utilizing the ACO
method as explored in [79]. In [91] a multi-ant colonies approach
for clustering data consists of some parallel and independent ant
colonies and a queen ant agent. Each ant colony process takes
different types of ants moving speed and different versions of the
probability conversion function to generate various clustering
results. A number of hybrid algorithms based on ACO method
are available in the literature. Initially Kuo et al. [48] have
proposed ants based k-means algorithm, which is subsequently
improved by hybridization of ACO, self-organizing maps and
k-means in [12]. Further, Jiang et al. have developed new hybrid
clustering algorithms by combining the ACO with the k-harmonic
means algorithm in [38] and the DSBCAN algorithm in [37]. The
work in [32] utilized the ACO based clustering for document
retrieval and the AntClust algorithm was introduced in [49] for
web session clustering.

A new ant colony based method for text clustering using a
validity index is introduced [90]. In this method the walking of the
ants is mapped to the picking or dropping of projected document
vectors with different probabilities. In another work Zhang et al.
[95] suggests that the random movements of ants in the solution
space lead to slow convergence. They provide a method for faster
document clustering, called AFTC. The approach employs the
pheromone laid by the ants to avoid randomness of movement,
which lead the ants to move towards a direction with high
pheromone concentration at each step. The direction of movement
is the orientation where the text vectors are relatively more
concentrated. A new text clustering approach named elite ant
colony optimization clustering (EACOC), based on suitable reten-
tion of the elites has been introduced in [34]. The mechanism is to
retain the elites that the algorithm works, in a way that in each
iteration it retains a certain number of valuable solutions into the
next cycle, with the purpose of improving algorithm performance.
A new fully controllable ant colony algorithm (FCACA) for docu-
ments clustering has been introduced in [20]. This introduces a
new version of the basic heuristic decision function that signifi-
cantly improves the convergence and provides greater control over
the process of the grouping data.

Particle swarm based clustering: The particle swarm optimiza-
tion (PSO) algorithm is based on the swarming behavior of
particles searching for food in a collaborative manner [13]. The
cluster analysis using PSO was proposed in [69] for image cluster-
ing. Then, Van der Merwe and Engelbrecht [85] applied it for
cluster analysis of arbitrary datasets. The algorithm in its basic
form for cluster analysis consists of a swarm in a d dimensional
search space in which each particle position consists of K cluster
centroid vectors. A number of recent works tried to modify the
PSO algorithm to make it more effective for clustering problem. In
[14] the PSO algorithm was adapted to position prototypes
(particles) in regions of the space that represent natural clusters
of the input data set by influencing the particles' velocity update
from previous position along with taking into account the past
experiences. The hybrid algorithm based on k-means and PSO is
proposed [14]. In [2] a PSO based clustering algorithm is proposed
for web usage mining and clustering.

Biologically inspired based clustering: The biologically inspired
algorithms comprise natural meta-heuristics derived from living
phenomena and behavior of biological organisms. These algo-
rithms encompass artificial immune systems [15] and bacterial
foraging optimization [29]. These methods have recently been
applied to clustering problem. In [86] a new clustering algorithm
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based on the mechanism analysis of bacterial foraging is proposed.
It is an optimization based methodology in which a group of
bacteria forage to converge to certain positions as final cluster
centers by minimizing the fitness function. The initial solution
space is created by assigning the bacteria positions as the ran-
domly chosen cluster centroids in the data set. Then, the chemo-
taxis process defines the movement of bacteria, which represents
either a tumble followed by a tumble or tumble followed by a run.
Younsi and Wang [92] have developed and used a new artificial
immune system algorithm for data clustering that uses the
interaction between B-cells and antigens to tackle the optimiza-
tion problem.

Harmony search based clustering: The harmony search (HS)
algorithm is a meta-heuristic algorithm mimicking the improvisa-
tion process of musicians (where music players improvise the
pitches of their instruments to obtain better harmony) [27,59]. The
HS algorithm has been applied for various engineering optimiza-
tion problems and in the context of clustering, novel partitional
algorithms have been developed very recently. A new HS based
document clustering with continuous representation is considered
in [61]. In this algorithm each cluster centroid is considered as a
decision variable; so each row of harmony memory, which con-
tains K decision variables, represents one possible solution for
clustering. The main drawback of the algorithm developed in [61]
is its continuous representation. The continuous representation of
clusters' centroid decreases the efficiency of pitch adjusting
process. Another HS based document clustering with discrete
representation called HKA is proposed in [60]. Furthermore, using
a probabilistic analysis it has been shown that the proposed
algorithm convergences to a near-optimal solution in a fairly
reasonable amount of time. This algorithm codify the whole
partition of the document set in a vector of length n, where n is
the number of the documents. Considering the behavior of HKA, it
was found that the proposed algorithm is good at finding promis-
ing areas of the search space, but not as good as k-means at fine-
tuning within those areas, so it may take more time to converge.
On the other hand, k-means algorithm is good at fine-tuning, but
lack a global perspective. So a hybrid algorithm that combines two
ideas is proposed in [26]. In the hybrid algorithm at each
improvisation step a one-step k-means is leveraged to fine-tune
the new solution.

3. Preliminaries

Notation: Throughout this paper, we use the following notation.
We use bold-face letters to denote vectors. For any two vectors
d;d0ARd, we denote by 〈d;d0

〉 the inner product between d and d0,

i.e., 〈d;d0
〉¼ Pd

i ¼ 1 did
0
j. We use bold upper case letter for matrices.

Throughout this paper, we only consider the ℓ2-norm which is

defined as ‖x‖2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i ¼ 1 x
2
i

q
for any vector xARd. A summary of

notations used in this paper is provided in Table 1.

3.1. The clustering problem

Clustering algorithms are commonly used to summarize large
quantities of data, in a wide variety of domains. Clustering in a d-
dimensional Euclidean space Rd is the process of partitioning a
given set of n points into a fixed number of K clusters based on some
similarity metric in a clustering procedure. The ith object
is characterized by a real-value d-dimensional profile vector
where each element corresponds to the jth real-value feature
(j¼ 1;2;…;d). The vector space model gives us a good opportunity
for defining different metrics for similarity between two data points.

Let D¼ fd1;d2;…;dng be a set of n objects and use DARn�d

to denote the corresponding data matrix. Given D, the goal of
a partitional clustering algorithm is to determine a partition
D¼D1 [ D2 [ ⋯ [ DK where each partition Di is associated with
a center ciARd and denote by C¼ fc1; c2;…; cK g the set of centers.
Each data point di is assigned to the closest center, i.e.,
arg minkA f1;2;…;KgDðdi; ckÞ for a similarity measure Dð�; �Þ which will
be discussed shortly. The goal is to find centers such that objects
which belong to the same cluster are as similar to each other as
possible, while objects which belong to different clusters are as
dissimilar as possible. Over the years, two prominent ways have
been used to compute the similarity between two data d and d0.
The first method is based on Minkowski distances which is for any
two vectors d and d0 is defined by

DMðd;d0Þ ¼
Xd
i ¼ 1

ðdi�d0iÞp
 !1=p

; ð1Þ

which is equivalent to Euclidean distance for p¼2.
The other commonly used similarity measure in data clustering

is the cosine correlation measure [74], given by

DCðd;d0Þ ¼ 〈d;d0
〉

Jd1 J Jd2 J
; ð2Þ

where J � J denotes the norm of a vector. This measure becomes
one if both vectors are identical, and zero if there is nothing in
common between them (i.e., the vectors are orthogonal to each
other).

To find K centers, the problem is defined as an minimization of
an objective function based on both the data points and the center
locations. A popular function used to quantify the goodness of a
partitioning is determined by sum of the intra-cluster distances

Table 1
Summary of notations consistently used in the paper and their meaning.

Symbol Meaning

n The number of data objects
d The ambient dimension of data objects
D¼ ðd1;…;dnÞ The set of objects to be clustered
K The number of clusters

AAf0;1gn�K The assignment matrix

C¼ fc1 ; c2 ;…; cK g The cluster centers associated with an assignment matrix A
DMð�; �Þ : Rd � Rd-Rþ The Minkowski similarity measure between data points

DC ð�; �Þ : Rd � Rd-Rþ The Cosine similarity measure between data points

B The number of bees in the hive
B¼ fb1 ;b2;…; bBg The set of B bees used in optimization
R The number of recruiter bees
T The total number of iterations
M The number of constructive moves
S The number of stages at each iteration of BCO algorithm
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which is defined as [31,80]

f ðD; CÞ ¼
Xn
i ¼ 1

min
j ¼ 1;2;…;K

Dnðdi; cjÞ; ð3Þ

where Dnðdi; cjÞ denotes either the Minkowski similarity or cosine
distance between object di and center cj. The clustering problem
aims to find the partitioning that has optimal adequacy with
respect to the huge number of possible candidate partitioning,
which is expressed in the form of the Stirling number of second
kind1 which indicates the complicated nature of the problem as

1
K!

XK
i ¼ 1

ð�1ÞK� i K

i

� �
iN :

It has been shown that the clustering problem is NP-hard even
when the number of clusters is two [16]. This illustrates that the
clustering by examining all possible partitions of n data vectors of
d-dimensional into K clusters is not computationally feasible. The
problem is even more demanding when additionally the number
of clusters is unknown. Then the number of different combinations
is the sum of the Stirling numbers of the second kind. As a result,
exhaustive search methods are far too time consuming even with
modern computing systems. Obviously, we need to resort to some
optimization techniques to reduce the search space, but there is no
guarantee that the optimal solution will be found. Although
various optimization methodologies have been developed for
optimal clustering, the complexity of the task reveals the need
for developing efficient algorithms to precisely locate the optimum
solution. In this context, this study presents a novel stochastic
approach for data clustering, aiming at a better time complexity
and partitioning accuracy.

3.2. The bee colony optimization meta-heuristic

The bee colony optimization (BCO) meta-heuristic has been
proposed by Lucic and Teodorovic [54,55]. It is a simple and robust
stochastic optimization algorithm and the basic idea is to create a
colony of artificial bees capable of solving difficult combinatorial
optimization problems successfully. The algorithm simulates the
intelligent behavior of bee swarms. An artificial bee colony behaves
to some extent like and to some extent in a different way from bee
colonies found in the natural world. The performance of the BCO
algorithm is compared with those of other well-known modern
meta-heuristic algorithms such as genetic algorithm (GA), differ-
ential evolution (DE), and particle swarm optimization (PSO) on
constrained and unconstrained problems [81,8].

The BCO is a model of collecting and processing nectar, the
practice which is highly organized. Each bee decides to reach the
nectar source by following a nest mate who has already discovered
a patch of flowers. Each hive has a so-called dance floor area on
which the bees that have discovered nectar sources, dance as a way
to convince their nest mates to follow them. If a bee decides to leave
the hive to get nectar, she follows one of the bee dancers to one of
the nectar areas or stick to her nectar source. Upon arrival, the
foraging bee takes a load of nectar and returns to the hive relin-
quishing the nectar to a food-store bee. After she relinquishes the
food, the bee can (a) abandon the food source and become again an
uncommitted follower; (b) continue to forage at the food source

without recruiting nest mates; or (c) dance and thus recruit nest
mates before returning to the food source. The bee opts for one of
the above alternatives with a certain probability. Within the dance
area, the bee dancers advertise different food sources.

The BCO algorithm consists of two alternating phases: a forward
pass and a backward pass. During each forward pass, every bee is
exploring the search space and creating various partial solutions. It
applies a predefined number of moves (visiting a certain number of
nodes), which construct and/or improve the solution, yielding a
new solution. During the second forward pass, bees will visit few
more nodes, expand previously created partial solutions. Having
obtained new partial solutions, the bees return to the nest and start
the second phase, the so-called backward pass. During the back-
ward pass, all bees share information about their solutions. In the
nest, all bees participate in a decision-making process and exchange
information about quality of the partial solutions created. Bees com-
pare all generated partial solutions.

During the backward pass, based on the quality of the partial
solutions generated, every bee decides with a certain probability
whether it will advertise its solution or not. The bees with better
solutions have more chances to advertise their solutions. The remain-
ing bees have to decide whether to continue to explore their own
solution in the next forward pass, or to start exploring the neighbor-
hood of one of the solutions being advertised. Similarly, this decision
is taken with a probability, so that better solutions have a higher
probability of being chosen for exploration. Depending on the quality
of the partial solutions generated, every bee possesses certain level of
loyalty to the path leading to the previously discovered partial
solution. The search process is composed of iterations. The first
iteration is finished when bees create for the first time one or more
feasible solutions by visiting all nodes.

The two phases of the search algorithm namely the forward
and backward passes, are performed iteratively until a stopping
condition is satisfied. The possible stopping conditions could be,
for example, the maximum number of iterations or the number
of iterations without the improvement of the objective function.
The best discovered solution during the first iteration is saved, and
then the second iteration begins. Within the second iteration, bees
again incrementally construct solutions of the problem, etc. There
are one or more solutions at the end of each iteration. The analyst-
decision maker prescribes the total number of iterations. The
detailed steps of optimizing function f ðxÞ for decision variable x
are summarized as follows. We set the number of stages S to be
same as the number of decision variables. We also let B denote the
number of bees in the hive, T denote the total number of iterations,
and M represents the number of constructive moves during one
forward.

1. Initialization: Every bee is set to be an empty solution. A
feasible solution of the problem is initialized as the best
solution xn.

2. Optimization: The following steps are iterated for t ¼ 1;2;…; T
iterations:
(a) Set the current stage to be one, i.e., s’1.
(b) For every bee do the forward pass as

(i) m’1 //counter for constructive moves in the
forward pass.

(ii) Evaluate all possible constructive moves.
(iii) According to evaluation, choose one move using the

roulette wheel or tournament.
(iv) m’mþ1; If mo ¼M then go to Step ii.

(c) All bees are back at the hive and backward pass starts.
Allow bees to exchange information about quality of the
partial solution created.

(d) Evaluate (partial) objective function value for each bee.
(e) Sort the bees by their objective function value.

1 The Stirling numbers of the second kind [78], that is usually denoted by Sðn; kÞ
or n

k

� �
is the number of ways to partition a set of n labelled objects into k nonempty

unlabelled subsets. Equivalently, it captures the number of different equivalence
relations with precisely k equivalence classes that can be defined on an n element
set. For example, the set f1;2;3g can be partitioned into three subsets in one way:
ff1g; f2g; f3gg; into two subsets in three ways: ff1;2g; f3gg, ff1;3g; f2gg, and
ff1g; f2;3gg; and into one subset in one way: ff1;2;3gg. Obviously, n

1

� �¼ n
n

� �¼ 1.
The Sðn; kÞ can be explicitly calculated by Sðn; kÞ ¼ ð1=k!ÞPk

j ¼ 0 ð�1Þk� jðkjÞjn .

R. Forsati et al. / Neurocomputing 159 (2015) 9–26 13

 

 

 



(f) Every bee decides randomly whether to continue its own
exploration and become a recruiter, or to become a
follower (bees with a higher objective function value have
a greater chance to continue their own exploration).

(g) For every follower choose a new solution from recruiters by
the roulette wheel.

(h) s’sþM, and if soS, go to Step (b).
(i) If the best solution xt obtained during the tth iteration is

better than the best-known solution, update the best
known solution (xn’xt)

(j) t’tþ1.
3. Output: Report the best solution xn as the final solution.

4. The basic bee colony based algorithm to data clustering

In this section we first propose a pure bee colony based
clustering algorithm namely BCOCLUST. We begin in Section 4.1
by giving detailed steps of the first proposed algorithm (BCO-
CLUST). The nature of BCO algorithm [82,8] is to force the un-loyal
bees to follow only the loyal bees. In some problems like cluster-
ing, this behavior of BCO algorithm leads to getting stuck into a
local optimum, since most of the bees start following a loyal
bee which is foraging for a local optimum solution. To overcome
this problem, we made a change in this behavior and propose
Improved BCOCLUST (IBCOCLUST) algorithm in Section 4.2. To
achieve even better clustering, the explorative power of IBCO-
CLUST is combined with the refining power of the k-means in four
ways. Contrary to the localized searching property of k-means
algorithm, the proposed algorithms perform a globalized search in
the entire solution space. Additionally, the proposed algorithms
improve k-means by making it less dependent on the initial
parameters such as randomly chosen initial cluster centers, there-
fore, making it more stable. The details of these hybridization
algorithms are described in Section 4.3.

4.1. BCOCLUST: bee colony based clustering

In order to cluster data using BCO, we must recast clustering as
an optimization task that locates the optimal centroids of the
clusters rather than to find an optimal partitioning, with clustering
quality as the objective, and to use a suitable general purpose
optimization method to find a good clustering. The principal
advantage of this approach is that the objective of the clustering
is explicit, which enables us to better understand the performance
of the clustering algorithm on particular types of data and to use
task-specific clustering objectives. It is even possible to consider
several objectives simultaneously, an approach explored recently
in [94]. This model offers us a chance to apply BCO algorithm on
the optimal clustering of a collection of data.

Recall that the goal is to partition n vectors each of themwith d
dimensions into K clusters. In each iteration of our algorithm, for
each cluster, all the bees leave the hive to allocate some of the data
to that cluster with special probabilities and come back to the hive
to see the work of other bees and decide whether or not to
continue with their own decision or select an another bees
solution to go on with. We consider each cluster centroid as a
decision variable; so each solution extracted by a bee after each
iteration, which contains K decision variables, represents one
possible solution for clustering. On the other hand, each solution
contains a number of candidate centroids that represents each
cluster. In this case, each extracted solution contains K vectors
C¼ fc1; c2;…; cKg.

Viewing the clustering problem as an optimization problem of
such an objective function formalizes the problem to some extent.
However, we are not aware of any function that optimally captures

the notion of a good cluster, since for any function one can exhibit
cases for which it fails. Furthermore, not surprisingly, no poly-
nomial time algorithm is known for optimizing such cost func-
tions. The brute force solution would be to enumerate all possible
clusterings and pick the best. As the number of possible partition-
ing grows exponentially, this approach is not feasible. The key
design challenge in objective function-based clustering is the
formulation of an objective function capable of reflecting the
nature of the problem so that its optimization reveals meaningful
structure (clusters) in the data. The following subsections describe
our modeling and bee colony operators, according to this model
for clustering purpose.

4.1.1. Representation of solutions
The first attempt to solve data clustering by the BCO is how to

represent solutions to exploit bee colony algorithm. To this end,
we decompose data clustering into K stages where each stage
targets one cluster center. For instance, the first stage represents
the first cluster center; the second stage represents the second
cluster center and so on. At each stage sAf1;2;…;Kg, every bee
should select a subset of objects which will be allocated to the
cluster s and these objects will be used to compute cs. We note
that each individual bee consists of an encoding of a candidate
solution (food source) and a fitness that indicates its quality.
In order to apply it to solve clustering problem, we have used
floating point arrays to encode cluster centers. Let AAf0;1gn�K

be the assignment matrix, with n rows and K columns where
½aij�;1r irn;1r jrK indicates whether or not the ithe data is
assigned to cluster j, i.e.,

aij ¼
1 if ith data is assigned to jth cluster
0 otherwise

�
ð4Þ

The assignment matrix A¼ ½aij� has the properties that each aij
must assigned exactly to one cluster (i.e.,

PK
j ¼ 1 aij ¼ 1 for

i¼ 1;2;…;n). An assignment that represents K nonempty clusters
is a legal assignment. In this model, each food source discovered
by each bee is a candidate solution and corresponds to a set of K
centroids. So, the search space is the space of all matrices
AAf0;1gn�K that satisfy the constraint in which each data must
be allocated to exactly one cluster and there is no empty cluster.
Each stage involves optimizing one variable. We set the number of
stages to be K and the number of bees to participate in the search
process to be B. The algorithm proceeds in T iterations. Each bee at
each stage s¼ 1;2;…;K decides about the set of objects to be
assigned to the cluster s. An example of representation of solutions
is reported in Fig. 1. The number of solution components to be
visited within one forward pass is set to one (m¼1). Therefore, at
each forward pass, bees are supposed to visit a single stage.

All bees are located in the hive at the beginning of the search
process. Each artificial bee allocates a subset of the data to the
corresponding cluster with specified probabilities in each stage,
and in this way constructs a solution of the problem incrementally.
Bees are adding solution components to the current partial
solution until they visit all of the K stages. The search process is
composed of iterations. The first iteration is finished when bees
create feasible solutions. The best discovered solution during the
first iteration is saved, and then the second iteration begins. In
each iteration of proposed algorithm, for each cluster (stage), all
the bees leave the hive to allocate some of the data to that cluster
with special probabilities and come back to the hive to see the
work of other bees until that time and decide whether to continue
its way or select one of the other bees solution and continue on
that way.
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4.1.2. Evaluation of solutions
A key characteristic of most clustering algorithms is that they

use a global criterion function whose optimization drives the
entire clustering process. For those clustering algorithms, the
clustering problem can be stated as computing a clustering
solution such that the value of a particular objective function is
optimized. Our objective function is to minimize intra-cluster
similarity while maximizing the inter-cluster similarity. Fitness
value of each solution, which corresponds to one potential solu-
tion, is determined by sum of the intra-cluster distances (SICD) as
detailed in Eq. (8).

Clearly, the smaller the sum of the distances is, the higher the
quality of clustering. A food source represents a possible solution
to the problem. The quantity of existing sources of nectar in the
areas are explored by the bees corresponds to the quality of the
solution represented by that food source. Each iteration of the
BCOCLUST algorithm is detailed as the following:

Step 1. Initialization: The first step is the initialization. If this is
not the first iteration of the algorithm and the best discovered
cluster centers during the previous iterations are available, the
initial cluster centers for all the stages are set to the best answer of
the previous iteration. In other words, after generation of a set of
initial solutions obtained in the previous iteration which described
in the next steps, we rank the initial solutions based on the fitness
function and set the K best of them as the initial cluster centers.
Otherwise, if this is the first iteration, a set of initial cluster centers
generated randomly from the data points in D will be set for each
cluster. Each solution represents K cluster centers. The cluster
centers of the ith stage are randomly selected from the uniform
distribution over the set and indicate the cluster center of
ith stage.

There is a loop from 1 to K where in each loop the following
two steps are performed:

Step 2. Constructive moves in the forward pass (allocate data to
cluster): In each forward pass, every artificial bee visits one stage,
allocates the data to the corresponding cluster, and after that
returns to the hive as detailed in Step 3. There is a loop from 1 to K
where within each loop, the data will be allocated to the
corresponding cluster. For each cluster, the probability of a bee
choosing the data i as a member of jth cluster (Cj), pij, is expressed
using the Logit model as follows:

pij ¼
expð�Dnðdi; cjÞÞPn

m ¼ 1 expð�Dnðdm; cjÞÞ
; j¼ 1;2;…;K ð5Þ

where Dðdi; cjÞ denotes the distance of ith data to jth cluster. For all
data points which have not been assigned yet, this process works
in this way that for each non-allocated data, a random number is
generated, if the number is less than datas’ allocation probability,
then the data will be allocated to cluster j with probability 1=K or
will be set free. Within each forward pass a bee visited a certain
number of nodes and created a partial solution. After solutions are
evaluated (and normalized) the loyalty decision and recruiting
process are performed as described in the following subsection.

Step 3. Backward pass (Bees partial solutions comparison
mechanism): After all of the bees completed Step 2, they will be
back to hive to compare their partial solutions with themselves.
We assume that every bee can obtain the information about
solutions' quality generated by all other bees. In this way, bees
compare all generated partial solutions. Based on the quality of the
partial solutions generated, every bee decides whether to abandon
the created partial solution or dance and thus recruit the nest-
mates before returning to the created partial solution. Depending
on the quality of the partial solutions generated, every bee
possesses certain level of loyalty to the previously discovered
partial solution. Our criterion to decide about the goodness of
discovered solution in general is sum of the distance of each vector
from its cluster center for all the vectors. We want this criterion to
be as minimal as possible. So as the bees are back at the hive, the
probability that bth bee (during stage sAf1;2;…;Kg and iteration
tAf1;2;…; Tg) will be faithful to its previously generated partial
solution (loyalty decision) is expressed as follows:

pbðsþ1; tÞ ¼ e�Obðs;tÞ=ðs�tÞ; b¼ 1;2;…;B; ð6Þ
where Obðs; tÞ is the normalized value of SICDb defined as

Obðs; tÞ ¼
SICDbðs; tÞ�SICDminðs; tÞ
SICDmaxðs; tÞ�SICDminðs; tÞ

ð7Þ

where SICDmax and SICDmin denote the objective function value for
the worst and the best discovered partial solution between all the
bess, respectively, and SICDb is sum of the distances of each object
from its cluster center for all the objects that has been assigned by
bee b as shown below:

SICDbðs; tÞ ¼
Xs
i ¼ 1

Xn
j ¼ 1

Db
ji: ð8Þ

Db
ij ¼

Dnðdj; cbi Þ if jth data is assigned to ith cluster by bee b

0 otherwise

(

ð9Þ
where cbi is the center for cluster i decided by bee b.

SICDminðs; tÞ ¼ min
iA f1;2;…;Bg

SICDiðs; tÞ ð10Þ

SICDmaxðs; tÞ ¼ max
iA f1;2;…;Bg

SICDiðs; tÞ ð11Þ

Let us discuss Eq. (6) in more detail. The better partial solution
(i.e., lower Ob value) will increase the probability that bee b will be
loyal to the previously discovered partial solution. Additionally,
the greater the ordinary number of the forward passes, the higher
the influence of the already discovered partial solution will be.
This is expressed by the term s in the denominator of the
exponent. In other words, at the beginning of the search process,
bees are more brave to search the solution space. The more
forward passes they make, the less the bees have courage to
explore the solution space. The more we are approaching the end
of the search process, the more focused the bees are on the already
known partial solution.

4.1.3. Recruiting process
At the beginning of a new stage, if a bee does not want to

expand the previously generated partial solution, the bee will go to
the dancing area and will follow another bee. Within the dance
area the bee dancers (recruiters) advertise different partial solu-
tions. We have assumed in this paper that the probability that the
partial solution of bee b would be chosen by any uncommitted bee
is equal to:

pb ¼ e� γObðs;tÞ; b¼ 1;2;…;R ð12ÞFig. 1. Representation of BCO in clustering.
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where γAð0;1Þ and R denotes the number of recruiters. The
probability pb is used in a roulette wheel selection or tournament
selection algorithm and one of the bees is selected.

Using Eq. (12) and a random number generator, every uncom-
mitted follower joins one bee dancer (recruiter). Recruiters fly together
with their recruited nest mates in the next forward pass along the path
discovered by the recruiter. So the bee that wants to continue another
partial solution will set its partial solution exactly as the selected bee
but will continue the algorithm independently. At the end of this path,
all bees are free to independently search the solution space and
generate the next iteration of constructive moves. It can be inferred
from Eq. (7) that if a bee has discovered the lowest distance in stage s
of iteration t, the bee will fly along the same partial path with the
probability equal to one. The higher the sum of the distance of a
discovered path the smaller the probability of flying again along the
same path.

Step 4. Allocation of non-allocated data: After the loop of K
clusters has finished there might be some data that has been not
allocated to any cluster yet for each bee. These vectors will be
allocated to each cluster with a greedy algorithm which means
each vector belongs to the cluster that its cluster center is the
nearest center to that vector.

Step 5. Setting the cluster centers (computing the centroid of
clusters): At last, the cluster centers as the centroid of the vectors
belong to each cluster for each bee are computed as follows: each
solution extracted by each bee corresponds to a clustering with
assignment matrix A. Let fc1; c2;…; cKg be the set of K centroids for
assignment matrix A. The kth centroid is computed as

ck ¼
Xn

i ¼ 1
akidi

Xn

j ¼ 1
akj

h i
:

.
ð13Þ

Step 6. Selecting the best answer: In this phase, among all
generated solutions, the best one is determined and is used to
update the global best. The global best will be used for setting the
cluster centers for all the stages in next iteration. At this point, all B
solutions are deleted, and the new iteration starts. The BCO
proceeds iteratively until a stopping condition is met.

4.2. IBCOCLUST: improved BCOCLUST algorithm

A major shortcoming of the BCOCLUST algorithms that leads to
unreasonable results is the low diversity of solutions in the course
of search process. This phenomenon is the consequence of the
nature of the algorithm where all the bees start to follow the one
whose answer is the best among others (i.e., exploitation) after a
few iterations, and so the answer will converge to a local optimized
one. To overcome this problem, we present the Improved BCO-
CLUST (IBCOCLUST) algorithm which is based on two major
modifications we have made to the original BCO algorithm: fairness
and cloning. The main insight which underlines the proposed
improved algorithm and the cloning and fairness ideas stems from,
is as follows. For meta-heuristics algorithm such as BCO the main
tricky point is to balance the trade-off between exploration and
exploitation. On one hand, a high value for the exploitation rate

forces the algorithm to mostly stick to the exiting solutions found
by the bess (i.e., exploitation) and consequently leading to less
exploration of the solution space. On the other hand, by choosing a
small value for exploitation, the algorithm performs a random
behavior in the solution space (i.e., exploration), hence losing all
the information collected during the past rounds which deteriorates
the effectiveness of the algorithm. The cloning idea is to give an
erasable amount of exploitation to the BCO algorithms which is
lacked in the original algorithms. The detailed description of these
two features is as follows.

Fairness: With this modification, we aim at giving chance to
every bee to be followed. In particular, in the improved algorithm
after a bee decides to follow another bee, it is not forced to follow
only loyal bees and it may consider both loyal and non-loyal ones to
follow. In other words, there is no restriction in following just loyal
bees and every bee can follow any other bee. It is obvious that the
chance that a loyal bee is selected is much more than the chance
that a recruiter is selected due to their fitness that is included in the
probability of selection. By giving chance to non-loyal bees to be
followed, evenwith a small probability, the algorithm is able to keep
the diversity of solutions in a reasonable level and therefore having a
much better explorative power.

Cloning: Another improvement we have made is to resolve the
forgiveness characteristic of the BCO algorithm. In the standard BCO,
the iterations of the algorithm are independent and no propagation
of knowledge happens between different iterations. But since the
best solution of each iteration, potentially carries all the information
the algorithm learns in the course of that specific iteration, it would
be better to incorporate this knowledge in next iteration. To this end,
we propose the following novel idea to propagate the information
during the optimization. Let Ct�1

n
¼ fct�1;1

n ; ct�1;2
n ;…; ct�1;K

n g denote
the best clustering solution obtained till iteration t�1. In the tth
iteration, we add a specific bee to the set of bees calledcloning bee
that behaves as follows. The cloning bee is similar to other bees with

Table 2
The statistics of general purpose benchmark data sets used in our first set of
experiments.

Dataset # Attributes (d) # Classes (K) # Samples (n)

Iris 4 3 150
Wine 13 3 178
Glass 9 6 214
Wisconsin breast cancer 9 2 683
Vowel 3 6 871

Table 3
Model selection for the number of bees. For each data set we fix the value of other
parameters including the maximum number of iteration and γ, and evaluate the
performance of the IBCOCLUST algorithm for different number of bees. Recall that T
denotes the maximum number of iterations.

Constant Configuration Data set Number of bees SICD

γ ¼ 1 Iris 2 123.76
T¼1000 5 122.18

7 122.16
8 122.15

10 122.15
12 97.23
15 97.23
16 97.35
17 97.34
20 97.23
24 97.23
25 97.34
30 97.23

γ ¼ 0:01 Glass 2 250.44
T¼1000 3 246.66

6 248.92
8 228.64
9 219.85

12 220.56
15 218.72
16 220.13
17 219.74
18 214.74
20 214.85
25 220.96
30 217.68

R. Forsati et al. / Neurocomputing 159 (2015) 9–2616

 

 

 



the difference that in the forward pass, it is forced to follow the
decision of Ct�1

n
. More specifically, at stage s of iteration t, the cloning

bee's decision is the subset of data points in D that are assigned to
sth cluster by Ct�1

n
, i.e., the cluster represented by ct�1;s

n .

Remark 1. The main insight that underlines the cloning and
fairness ideas stems from is as follows. For the meta-heuristics
algorithm such as BCO the main tricky point is to balance the

trade-off between exploration and exploitation. On one hand, a
high value for the exploitation rate forces the algorithm to mostly
stick to the exiting solutions found by the bees (i.e., exploitation)
and consequently leading to less exploration of the solution space.
On the other hand, by choosing a small value for exploitation,
the algorithm performs a random behavior in the solution space
(i.e., exploration), hence losing all the information collected during
the past rounds which deteriorates the effectiveness of the
algorithm. The cloning idea is to give a reasonable amount of
exploitation to the BCO algorithms which is lacked in the original
algorithms. In other words a chance is given to learn from the
experiences of other bees based on the quality of the solutions
they have found to reduce the amount of search done be all bees.

The other parts of the algorithm such as initialization, selecting
the bees to be loyal or non-loyal are exactly same as the
BCOCLUCT. The pseudo-code of the IBCOCLUST is demonstrated
in Algorithm 1.

Algorithm 1. IBCOCLUST.

Input: The number of iterations T, number of clusters K,
number of bees B, the data set D¼ fd1;d2;…;dng

1: Initialize Cn’A random valid clustering,
2: for t ¼ 1;…; T do
3: for b¼ 1;…;B do
4: if t40 then
5: Set the initial cluster centroid of the b to Cn

6: else
7: Select a random data as the centroid of each cluster

of each b
8: end if
9: end for
10: for s¼ 1;…;K do
11: for b¼ 1;…;B do
12: Select point d by tournament selection

Fig. 2. Convergence behavior of IBCOCLUST on Iris dataset with γ ¼ 1 and different
number of bees.

Fig. 3. Convergence behavior of proposed algorithms on glass data set with
number of bees B¼9 and γ ¼ 0:01.

Fig. 4. Convergence behavior of IBCOCLUST on glass data set with γ ¼ 0:01.

Table 4
Model selection for parameter γ. For each data set we fix the value of other
parameters including the number of bees and the maximum number of iteration
and evaluate the performance of the algorithm for different values of γ. Recall that T
and B denote the maximum number of iterations and the number of bees,
respectively.

Constant configuration Data set Variable parameter Value SICD

B¼12 Iris γ 0.0001 97.33
T¼1000 0.0005 97.34

0.001 97.23
0.005 97.33
0.01 97.34
0.05 97.33
0.1 97.35
0.5 97.45
1 97.23

B¼12 Wine γ 0.0001 16,453.28
T¼1000 0.0005 16,460.80

0.001 16,455.28
0.005 16,460.00
0.01 16,476.80
0.05 16,460.80
0.1 16,497.59
0.5 16,465.50
1 16,567.45

B¼12 Vowel γ 0.0001 149,786.85
T¼1000 0.0005 149,786.85

0.001 150,769.34
0.005 149,786.85
0.01 14,998.34
0.05 149,786.85
0.1 149,466.23
0.5 150,093.05
1 150,693.05

B¼18 Glass γ 0.0001 218.98
T¼1000 0.0005 218.90

0.001 248.55
0.005 223.90
0.01 218.26
0.05 223.84
0.1 223.94
0.5 223.90
1 223.14
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13: r’Uð0;1Þ where U is the uniform random generator
14: if ro 1

K then
15: Allocate selected point to the current cluster
16: end if
17: end for
18: for b¼ 1;…;B do
19: Calculate the probability of sticking to its solution
20: r’Uð0;1Þ
21: if rosticking to its solutionthen
22: The specified bee will stick to its own solution
23: else
24: Select another bee by tournament selection and

choose its solution
25: end if
26: end for
27: end for
28: Allocate non-assigned data points with a greedy

algorithm
29: Select the best solution at iteration t and set to be the Cn

30: end for
Return Cn

4.3. Bee colony k-means clustering

The IBCOCLUST algorithm performs a global search for solu-
tions whereas the k-means clustering procedure performs a local
search. In a local search, the solution obtained is usually located in
the proximity of the solution obtained in the previous step. For
example, the k-means clustering algorithm uses the randomly
generated seeds as the initial clusters centroids and refines the
position of the centroids at each iteration. The refining process of
the k-means algorithm indicates that the algorithm only explores
the very narrow proximity, surrounding the initial randomly
generated centroids and its final solution depends on these
initially selected centroids. So, the IBCOCLUST and k-means algo-
rithms have complementary strong and weak points, the IBCO-
CLUST is good at finding promising areas of the search space, but
not as good as k-means at fine-tuning within those areas. On the
other hand, the k-means algorithm is good at fine-tuning, but lacks
a global perspective. It seems a hybrid algorithm that combines
the IBCOCLUST with k-means can result in an algorithm that can
outperform either one individually.

The following lemma shows that the k-means algorithm always
improves the objective function.

Lemma 1. The k-means algorithm monotonically decreases the
objective until local convergence, i.e., f ðD; Ctþ1ÞrfðD; CtÞ.

Proof. Let Ct ¼ ðct1;…; ctK Þ be the cluster centers at the tth iteration
of the k-means algorithm which partitions the data points into the
sets Dt

1;…;Dt
K , where Dt

i ; iA ½K� is the set of points assigned to ith
cluster based on Ct . The objective function for this clustering is as

f ðD; CtÞ ¼
XK
k ¼ 1

X
dADk

‖d�ctk‖
2

which is the sum of the distances of data points to the centers of
the assigned clusters. Let Ctþ1 ¼ ðctþ1

1 ;…; ctþ1
K Þ denote the solution

at ðtþ1Þ th iteration by applying two steps of the k-means
algorithm. Similarly, let Dtþ1

1 ;…;Dtþ1
K denote the set of the data

points assigned to each cluster at the end of ðtþ1Þ th iteration.
We consider the effect of each step of k-means algorithm

separately. The reassignment step results in a non-increasing
objective since the distance between a data point and its newly
assigned cluster mean never increases the objective. Similarly, the
mean update step results in an increasing objective since the mean

is the best representation of a cluster in terms of the squared
Euclidean distance, i.e.,

XK
k ¼ 1

X
dADt þ 1

k

‖d�ctþ1
k ‖2r

XK
k ¼ 1

X
dADt

k

‖d�ctk‖
2:

The fact that the algorithm will converge locally follows from the
fact that the objective function cannot increase and there are only
a finite number of possible clustering of data. □

We note however that the number of iterations required to
reach convergence can be exponentially large, and furthermore,
there is no any non-trivial lower bound on the gap between the
value of the k-means objective of the algorithms output and the
minimum possible value of that objective function.

Although Lemma 1 indicates that the k-means algorithm mono-
tonically decreases the objective, but it might find locally optimal
solutions with respect to the clustering error. This is due to the non-
convex nature of criterion functions (sum of the squared Euclidean
distance) in terms of both centers and assignment of data points,
the iterative relocation methods are often trapped into one of the
local minima. As mentioned before, the problem in general in NP-
hard (see e.g., few recent results on proving this claim [3,17,58]).
Hence the quality of a final clustering solution depends and is very
sensitive to the initial configuration and the obtained partition is
often only suboptimal (not the globally best partition). This defi-
ciency becomes more serious for applications such as which
intensifies the hardness of the problem due to low quality of text
data, high-dimension and sparseness properties of documents.

To illustrate this fact, we provide a simple setting which shows
the hardness of the problem and sub-optimality of the k-means
method. To do so, consider a clustering problem over real line with
five clusters with centers C¼ fc1; c2;…; c5g. For the simplicity of
exposition we assume that c1o⋯oc5 and every two consecutive
centers are located in a distance of Δ. We assume that there is a ball
of radius δ around each center and n data points are distributed in
these balls uniformly at random. Hence for the optimal clustering of
these n points, the sum of squared Euclidean distance of points to
cluster centers is Oðnδ2Þ, because the distance of each point to its
cluster center is at most δ.

We utilize the k-means algorithm to cluster these points. To this
end, we initialize the k-means algorithm by choosing five data points
at random as the initial centers of the clusters. There is a chance that
no data point from first cluster, two data points from the third
cluster, and on data point from the remaining clusters have been
chosen as centers. In the first round of k-means, all points in clusters
1 and 2 will be assigned to the cluster centered at c1. The two centers
in cluster 3 will end up sharing that cluster. And the centers in
clusters 4 and 5 will move roughly to the centers of those clusters.
Thereafter, no further changes will occur. This local optimum has cost
ΩðnΔ2Þ. We note that this cost can be made arbitrarily far away from
the optimum cost by setting the distance between the consecutive
centers, i.e., Δ, large enough. As this example illustrates, despite the
convergence of k-means algorithm to local minimum, the initializa-
tion of k-means algorithm significantly affects the final result. In this
simple one dimensional problem, the only scenario that k-means
algorithm would generate reasonable result with a cost close to the
optimum cost is the case where in the initialization step we sample
on data point from each cluster. It is not hard to see that for large
number of data points compared to the number of clusters, i.e., n=K ,
the probability of this case is inversely proportional to the Stirling
number in Eq. (4) and is very small.

Motivated by the above example on the poor performance of the
k-means algorithm, we propose four different versions of the hybrid
clustering, depending on the stage where we carry out the k-means
algorithm. The hybrid clustering approaches use k-means algorithm
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to replace the refining stage in the IBCOCLUST algorithm. The hybrid
algorithms combine the power of the IBCOCLUST algorithm with
the speed of a k-means and the global searching stage and the local
refine stage are accomplished by those two modules, respectively.
The IBCOCLUST finds the region of the optimum, and then the
k-means takes over to find the optimum centroids. We need to find
the right balance between local exploitation and global exploration.

4.3.1. The sequential hybridization
Two kinds of hybridization of k-means and IBCOCLUST are

proposed in this section. One of them applies k-means and then

IBCOCLUST (improved bee colony þ k-means clustering) whereas
the other one changes the order of these algorithms (k-means þ
improved bee colony clustering). We need to find the right balance
between local exploitation and global exploration. The global
searching stage and the local refine stage are accomplished by
those two modules, respectively.

IBKClust: Hybridization of Improved Bee colony and k-means
Clustering. In the initial stage, the IBCOCLUST module is executed
for a short period (50–100 iterations) to discover the vicinity of the
optimal solution by a global search and at the same time to avoid
consuming high computation. When the IBCOCLUST is completed
or shows a negligible trend of improvement after many iterations,
the result from the IBCOCLUST module is used as the initial seed of
the k-means module. The k-means algorithm will be applied for
refining and generating the final result.

KIBClust: hybridization of k-means and improved bee colony
clustering. First k-means module is performed on the data, and
then the results of k-means are given to the IBCOCLUST as the
initial answers and the IBCOCLUST will continue its process.

4.3.2. The interleaved hybridization
In this hybrid algorithm, the local method is integrated into the

IBCOCLUST. For instance, after every L iterations, the k-means uses
the best vector from the IBCOCLUST as its starting point. Then
center of clusters is updated if the locally optimized vectors
(obtained by k-means) have better fitness value than those in
IBCOCLUST and this procedure repeated until stop condition.

4.3.3. The integrated hybridization
To improve the algorithm a one-step k-means algorithm is

introduced. In each iteration, after that a new clustering solution

Table 5
The configuration of parameters for different baseline algorithms which are compared to the proposed algorithms.

GA ACO PSO CABC HSCLUST

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Population 50 Ants (R) 50 Population 100 Colony size 100 HMS 2� K
Crossover rate 0.8 Probability for max trial 0.98 Min and max inertia 0.7,

0.9
Upper bounce 5 HMCR 0.9

Mutation rate 0.001 Local search probability 0.01 Acceleration factor (c1) 2 Limit 100 PARmin 0.09
Max number of

iterations
1000 Evaporation rate 0.01 Acceleration factor (c2) 2 Maximum cycle

number
1000 PARmax 0.99

Max number of
iterations

1000 Max number of
iterations

1000 Max Number of
Iterations

1000

Vmin �0.05
Vmax 0.05

Table 6
SICD comparison. Hybrid I and Hybrid II indicate the one step hybridization and the interleaved hybridization of IBCOCLUST and k-means algorithms, respectively.

Data Measure GA ACO k-means PSO CABC IBCOCLUST IBKCLUST KIBCLUST Hybrid I Hybrid II

Iris Average 139.98 97.17 106.05 103.51 — 97.27 97.33 96.4 96.38 95.14
Best 125.19 97.1 97.33 96.66 — 97.22 97.33 96.4 96.33 95.10

Wine Average 16,530.53 16,530.53 18,161 16,311 16,449.8 16,460.55 16,460.9 16,460.6 16,458.1 16295.9
Best 16,530.50 16,530.50 16,555.68 16,294.00 16,433.37 16,460 16,460.55 16,453.28 16,433.37 16,295

Glass Average — — 260.4 291.33 223.68 225.19 223.4 226.34 226.59 221.5
Best — — 215.68 271.29 212.32 214.85 214.78 217.97 214.78 214.71

Cancer Average — — 2988.3 3334.6 2964.4 2976.89 2976.33 2980.15 2977.59 2976.24
Best — — 2987 2976.3 2964.4 2976.24 2976.06 2980.15 2976.24 2976.11

Vowel Average — — 159,242.87 168,477 — 150,881.16 152,575.13 150,751.38 151,688.49 150,892.17
Best — — 149,422.3 163,882 — 149,466.61 149,466.61 150,469.89 149,490.88 149,473.9

Table 7
CEP comparison. Hybrid I and Hybrid II indicate the one step hybridization and the
interleaved hybridization of IBCOCLUST and k-means algorithms, respectively.

Algorithm Iris Wine Glass Cancer

VFI 0 5.77 41.11 7.34
Ridor 0.52 5.1 31.66 6.33
NBTree 2.63 2.22 24.07 7.69
MultiBoost 2.63 17.77 53.7 5.59
Bagging 0.26 2.66 25.36 4.47
Kstar 0.52 3.99 17.58 2.44
RBF 9.99 2.88 44.44 20.27
MlpAnn 0 1.33 28.51 2.93
BayesNet 2.63 0 29.62 4.19
PSO 2.63 2.22 39.5 5.8
ABC 0 0 41.5 2.81
IBCOCLUST 2.63 5.5 32.19 4.49
IBKCLUST 2.63 5.2 30.93 4.49
KIBCLUST 2.63 5.5 28.12 4.49
Hybrid I 2.63 4.31 28.12 3.7 5
Hybrid II 2.63 3.96 26.76 3.7
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is generated with applying the IBCOCLUST, we use k-means to
reassign each data to the cluster with the nearest centroid. If the
result of k-means has better fitness than the generated solution by
the IBCOCLUST, then we replace it with a candidate solution of the
IBCCOCLUST. In each iteration, one iteration of the IBCOCLUST and
then one iteration of k-means are performed, and the process will
continue until the fixed number of iterations has finished.

5. Experimental results on basic data sets

To better understand the performance of the proposed algo-
rithms, we divide the conducted experiments into two different
settings. In the first setting, we apply the proposed algorithms to
few well-known general purpose benchmark data sets and com-
pare them with the baseline algorithms. In the second setting, we
compare the proposed algorithms to the state-of-the-art algo-
rithms on document clustering. The main reason for splitting our
experiments into two parts is the unique challenges that exist in
clustering document data sets due to the high-dimensionality and
spareness characteristics of text data which makes it much
challenging problem. We note that different algorithms might
achieve totally different performance on these two types of data
sets. The focus of this section is on general purpose data sets. The
application of proposed algorithms to five different document data
sets will be discussed in Section 6.

We begin by introducing the data sets we have used in our experi-
ments followed by comparing the proposed algorithms to a number of
well-known algorithms according to their quality and rate of conver-
gence. We also compare the proposed hybrid algorithms to other
hybrid evolutionary methods proposed in the literature.

5.1. Data sets

In this work, five benchmark data sets from the UC Irvine (UCI)
machine learning repository [94] which is a well-known database

repository, are used to evaluate the performance of the proposed
BCO based algorithms. The data sets and their main statistics are
summarized in Table 2.

5.2. Experimental setup

In the next step, the proposed BCO based algorithms are applied to
the data sets summarized in Table 2. The Euclidean distance measure
is used as the similarity metric in each algorithm. It should be
emphasized at this point that the results shown in the rest of the
paper for every dataset, are the average of over 30 independent
runs of the algorithms (to make a fair comparison), each run with
randomly generated initial solutions and different seeds of the
random number generator. Also, for an easy comparison, the algo-
rithms proceed over 1000 iterations in each run since the 1000
generations are enough for convergence of the algorithms. No
parameter needs to be set up for the k-means algorithm. For each
data set optimum number of bees is decided empirically which will
be elaborated in the next subsection. We would like to emphasize
that our experimental results revealed that the optimum number of
bees is a factor of the number of features in the data set.

5.3. Empirical study of the impact of different parameters on
convergence of IBCOCLUST

The aim of this section is to study the effect of two important
parameters, namely the number of bees and the parameter γ on the
result attained by different proposed algorithms. The SICD value of the
obtained solution is the value of fitness function. The algorithmwe use
to evaluate is the IBCOCLUST which was described in Section 4.2.

5.3.1. The impact of number of bees on clustering quality
Figs. 2 and 4 report the fitness of solutions measured by SICD for

different values of the number of bees. We can see that decreasing
the number of bees leads to premature convergence and increasing

Table 8
The quality of different hybrid clustering algorithms on five data sets measured in terms of SICD.

Data Measure K-NM-PSO K-PSO K-GA K-HS K-ABC IBCOCLUST Hybrid (II)

Iris Average 96.67 96.76 97.10 96.22 96.29 95.14
Best 96.66 96.66 96.10 96.10 96.19 95.10

Wine Average 16,293.00 16,296.00 16,298.70 16,296.10 16,296.10 16,294.90
Best 16,292.00 16,292.00 16,295.00 16,292.20 16,292.50 16,292.00

Glass Average 200.50 221.55 221.70 221.76 221.89 221.35
Best 199.68 213.37 215.70 214.80 215.30 214.71

Cancer Average 2964.70 2965.80 2968.00 2975.30 2970.45 2967.24
Best 2964.50 2964.50 2965.56 2964.50 2964.60 2963.11

Vowel Average 150,895.61 150,990.65 150,992.45 150,908.56 150,903.45 150,892.17
Best 149,496.40 149,486.34 149,556.01 149,478.45 149,498.4 149,473.90

Table 9
The statistics of document data sets used in our experiments.

Dataset Label Description # Documents (n) # of Clusters (K)

Politics Polotics Random topics of politics 176 6
TREC Newspaper Various articles from certain topics 873 8
DMOZ DMOZ Selected documents among 14 topics 697 14
20 Newsgroup Message Collected from 10 different usenet newsgroups 9249 10
WebAce Wap Web pages listed in the subject hierarchy of Yahoo! 1560 20
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the number of bees leads to significant improvements in the initial
phase of the clustering. Note that when the time or the number of
iterations is fixed as shown in Figs. 2 and 4, increasing the number
of bees may deteriorate the quality of the clustering. In general we
can say, the larger number of bees, the more time (or iterations) is
needed for algorithm to find the optimal solution but usually higher
quality is achieved.

As it can be seen in Figs. 2 and 4, a very small number of bees
lead to less exploration in the search space this potentially leads to
the algorithm to get stuck in a local optimum. On the other hand,
as the number of iterations is finite, increasing the number of bees
may deteriorate the quality of the clustering. In general, using a
mild number of bees seems to be a good and logical choice with
the advantages of converging to the best result. In addition, our
empirical studies demonstrate that with a linear relation between
number of bees and the number of feature, better results are
reached.

To decide the best setting for the number of bees, the value of
the parameter γ and the number of iterations are set fixed and the
SICD of IBCOCLUST for different values of number of bees is
evaluated. Table 3 shows the effect of increasing the number of
bees, when the number of generations is constant with the value of
1000. By producing high number of bees, it will be guaranteed that,
most of the possible solutions that are available in the solution
space will be searched. As it can be inferred from Table 3, by
increasing the number of bees, better clustering results can be
acquired, but it has some fluctuations. Its worst value is gained

when number of bees is 2, while the best value was achieved when
the number of bees was linear function of the number of feature in
each cluster. Table 3 indicates that, when the amount of bees are
few, they seek the solution space in low depth, while by increasing
their number solution space will be explored in more depth.

5.3.2. The impact of parameter γ on clustering quality
We repeat the same process to decide the value of the

parameter γ in our experiments. Similar to the experiments
conducted for the number of bees, we fix the value of other
parameters, i.e., the number of bees and the maximum number of
iterations, and vary the value of parameter γ. The results of this
experiments of four data sets are reported in Table 4. From the
results in Table 4 few conclusions are in order. First, we note that
the value of parameter γ should be tuned based on the data set at
hand to obtain the best results. Second, we can observe that for
two Wine and Glass data sets, the value of γ is much smaller than
the best setting of this parameter for other two data sets.
Comparing Wine and Glass data sets to Iris and Vowel data sets
in terms of number of features, this fact demonstrates that for data
sets with a large number of features the value of γmust be chosen
smaller. Finally, based on the results in Table 4, it seems reasonable
to do a model checking on this parameter by performing a grid
search on the candidate values of γ in the ð0;1� interval with the
scales of 0.01 to find the best possible value.

5.4. Convergence analysis

Here we present experiments to investigate the effectiveness of
the proposed algorithms in tens of their convergence rate to the
optimal solution.

Table 10
Normalized SICD comparison. Hybrid I and Hybrid II indicate the one step hybridization and the interleaved hybridization of IBCOCLUST and k-means algorithms,
respectively.

Data Criteria k-means HSCLUST IBCOCLUST IBKCLUST KIBCLUST Hybrid I Hybrid II

Politics Euclidean 0.73254 0.6524 0.6043 0.6174 0.6162 0.597 0.5821
Cosine 0.7690 0.6732 0.6235 0.6246 0.6419 0.6382 0.601

Newspaper Euclidean 0.6815 0.3682 0.5445 0.5729 0.6323 0.5684 0.492
Cosine 0.7263 0.6723 0.6716 0.6392 0.5978 0.6093 0.5744

DMOZ Euclidean 0.4587 0.3952 0.2947 0.4543 0.4593 0.3758 0.3669
Cosine 0.4821 0.4092 0.3374 0.3419 0.3563 0.3655 0.3367

Message Euclidean 0.8325 0.7612 0.7423 0.7896 0.7747 0.7739 0.7511
Cosine 0.9206 0.8843 0.8958 0.8737 0.884 0.8624 0.8759

Wap Euclidean 0.8652 0.8147 0.8234 0.7951 0.8103 0.7968 0.7893
Cosine 0.8753 0.82 0.8433 0.7814 0.7882 0.7695 0.7532

Fig. 5. Normalized Euclidean SICD comparison.

Table 11
Comparison of proposed hybrid algorithms to other baseline algorithms in docu-
ment clustering measured in terms of F-measure quality.

Dataset Politics Newspaper DMOZ Message Wap

k-means 0.6035 0.5117 0.5423 0.3236 0.4302
GA 0.6822 0.6427 0.7194 0.5213 0.4982
HSCLUST 0.7655 0.7824 0.72445 0.6692 0.58963
IBCOCLUST 0.8317 0.7256 0.7668 0.6845 0.63291
IBKCLUST 0.8152 0.8324 0.7731 0.75993 0.6022
KIBCLUST 0.7916 0.8212 0.7563 0.6954 0.7225
Hybrid I 0.7928 0.8349 0.7433 0.7166 0.7098
Hybrid II 0.8846 0.8826 0.8574 0.7902 0.7342
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Fig. 3 illustrates the convergence behavior of the proposed
algorithms and the k-means algorithm on the Glass data set with
the number of bees B¼9 and γ ¼ 0:01. Fig. 3 illustrates that the
reduction of SICD value in IBCOCLUST follows a smooth curve from
its initial vectors to final optimum solution with no sharp moves.
Another noteworthy point in Fig. 3 is that SICD has the lowest final
value for L-step Interleaved Hybridization among the other algo-
rithms. The sequence of other algorithms with respect to their SICD
values are Interleaved Hybridization, Sequential Hybridization and
IBCOCLUST. It can be inferred from Fig. 3 that hybrid algorithms
overcome IBCOCLUST disadvantage by incorporating two-step
hybrid algorithms. The algorithm uses BCO to get close to optimal
solution, but since it does not fine-tune this result, it uses the
k-means algorithm to fine tunes that. The results show that the
hybrid approaches outperform the component algorithms (k-means
and IBCOCLUST) in terms of the quality of generated clusters. As it
can be seen from Fig. 3 the IBCOCLUST takes more time to reach the
optimal solution than the k-means. This is because the k-means
algorithmmay be trapped in local optimums. Although the k-means
algorithm is more efficient than the IBCOCLUST with respect to
execution time, the IBCOCLUST generates much better clustering
than the k-means algorithm.

5.5. Comparison to other baseline algorithms

In this part of experiments, we evaluate and compare the
performances of the proposed algorithms according to their quality
of generated clusters with k-mean, PSO based clustering (PSO) [43],
GA based clustering (GA) [67], ACO based clustering (ACO) [79] and
cooperative artificial bee colony based clustering (CABC) [97]
algorithms. The algorithmic parameters used in this set of experi-
ments for each baseline algorithm is reported in Table 5. The setting
of parameters for ACO, GA, PSO and CABC is the same as their
original paper.

To evaluate the quality of clustering obtained by different
algorithms, we use two metrics, namely Classification Error Percen-
tage (CEP) and SICD where the first measure has been chosen from
external quality measures and SICD has been selected from internal
measures. CEP expresses the clustering results from an external
export view as shown in Eq. (14), whereas SICD examines how
much the clustering satisfies the optimization constraints

CEP ¼ of misclassified objects
size of test dataset

� 100 ð14Þ

We now report and discuss the results for each measure
separately in the following subsections.

5.5.1. SICD based evaluation
Table 6 reports the SICD value of algorithms applied to the

mentioned data sets. The smaller the SICD value, the more compact
the clustering solution is. Looking at Table 6, we can see that the
results obtained by different proposed algorithms are comparable. It
is noticeable from Table 6 that the PSO algorithm outperforms the
proposed algorithms in Wine dataset but in other datasets the
proposed algorithms have better SICD than PSO and other well-
known algorithms. In comparing the proposed algorithms to each
other we can say that the 5 step Interleaved Hybridization outper-
forms the others.

5.5.2. CEP based evaluation
In order to make a better evaluation of clustering, as a primary

measure of quality, we used the widely adopted CEP measure.
Since the benchmark data sets have their nominal partitions
known to the user, we also compute the mean number of
misclassified data points. This is the average number of objects
that were assigned to clusters other than according to the nominal
classification. In Table 7, we report the misclassification errors
(with respect to the nominal classification) for the experiments
conducted for different algorithms.

5.6. Comparison to other hybrid clustering methods

In addition to the basic evolutionary-based clustering algorithms,
we compare the proposed algorithms to other state-of-th-art hybrid
algorithms. The hybrid models use both evolutionary based algo-
rithms and the k-means algorithm simultaneously. These algorithms
include a hybrid technique based on combining the k-means algo-
rithm, NelderMead simplex search, and particle swarm optimization
(K-NM-PSO) [22], a hybrid technique of k-means and particle swarm
optimization (K-PSO) [1], a hybrid approach based on genetic algo-
rithm and k-means algorithm called K-GA [45], harmony k-means
algorithm K-HS [60] and hybrid algorithm for data clustering using
ABC and k-means algorithm, dubbed K-ABC [46]. A brief description
of these algorithm is given below for completeness:

1. K-PSO [1]: The Hybrid PSO algorithm, first uses the k-means
clustering to seed the initial swarm, and then uses PSO
algorithm to refine the clusters formed by k-means. In this
approach, k-means is used to calculate the distance from each
item to the cluster centers. In this approach, the result of the
k-means algorithm is used as one of the particles, while the
remaining particles are initialized randomly.

2. K-NM-PSO [22]: This algorithm is a hybrid technique based on
combining the k-means algorithm, NelderMead simplex search,
and particle swarm optimization. It clusters arbitrary data by
evolving the appropriate cluster centers in an attempt to
optimize a given clustering metric. The hybrid algorithm first
executes the k-means algorithm, which terminates when there
is no change in centroid vectors. This algorithm randomly
generate 3 N particles, or vertices, and NM-PSO is then carried
out to its completion.

3. K-HS [60]: The hybrid K-HS algorithm combines the harmony
search algorithm with a one-step k-means algorithm. Each row
of the harmony memory in this algorithm has a discrete
representation. This algorithm codifies the whole partition of
the data in a vector of length n, where n is the number of
data. In this algorithm at each improvisation step a one-step
k-means is included to fine-tune the new solution.

4. K-GA [45]: This algorithm is a hybrid approach based on genetic
and k-means algorithms called the genetic k-means algorithm for
clustering analysis which defines a basic mutation operator
specific to clustering called distance-based mutation. The genetic

Fig. 6. F-measure comparison.
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operators that are used in K-GA are the selection, the distance
based mutation and the k-means operator. The representation of
GA is to consider a chromosome of length n and allow each allele
in chromosome to take values from f1;2;…;Kg. The mutation
changes an allele value depending on the distances of the cluster
centroids from the corresponding data point.

In Table 8, SICD values of hybrid version of IBCOCLUST is compared
to other hybrid evolutionary methods proposed in the literature. In
Iris, Wine and Vowel data sets, the proposed algorithm had the
lowest rates of SICD that makes the algorithm as a distinct one, while
in other datasets such as Glass and Cancer proposed algorithm had a
similar or superior performance comparing to other competitors. The
behavior of the proposed algorithms is varied in different datasets,
but what is very common among most of the datasets is the
superiority of the proposed algorithm, over the conventional varia-
tions, in most datasets.

6. Experimental results on document clustering

We now turn to comparing the proposed algorithms to the
state-of-the-art algorithms on document clustering. Document
clustering is a crucial and important application in Information
Retrieval [25] and characteristics of this type of data such as high-
dimensionality and sparseness introduces new challenges to
clustering problem and makes it harder compared to other types
of data. Having this in mind, we chose this application for
evaluating and comparing the proposed algorithms on different
document data sets. In this section, a brief introduction to the
problem of document clustering is given, the data sets are
introduced and the algorithms are compared with k-means, a GA
based algorithm, and harmony search based document clustering
(referred to as HSCLUST) [25].

6.1. Document clustering

In document clustering the vector space model is used to
represent documents in which each vector is set of the documents
features such as words, terms and N-grams. These vectors are used
in similarity measure between documents as well. We use the same
notation as Section 3, where in document clusteringDwould be the
set of n documents in which di; i¼ 1;2…; d is the ith documents.
These real values can be determined as the words frequency or can
have other relevant measures like frequency and inverse document
frequency (TF-IDF) which is the most widely used weighting
schema [75]. Having in mind that assuming all of the words in a
document will result in a very high vector dimension (i.e., large d), a
preprocessing phase is applied to eliminate the unnecessary words
and reduce the vector dimension [44]. The similarity measure is the
two well-known similarities namely Euclidean and Cosine mea-
sures which are introduced in Section 3 in Eqs. (1) and (2). Also the
performance of a clustering is measured, using the introduced SICD
fitness function as defined in Eq. (3).

6.2. Document data sets

For the application of document clustering five different
datasets with different characteristics are used. The first dataset
namely Politics is a dataset consisting of random topics in politics
which is collected in 2006. The TRED dataset is collected among
different topics from San Jose Mercury newspaper including topics
such as computers, electronics, health, medical, research, and
technology. The DMOZ dataset is collected among 14 topics in
which for each topic some web pages are selected and included in
the data. The 20 Newsgroup dataset is collection of 1000 messages

from each of the 10 different Usenet newsgroups resulting in
10,000 messages which become 9249 after preprocessing. The last
dataset WebAce is from the WebACE project (WAP) [9,66]. The
details about these datasets are demonstrated in Table 9.

The feature vector of each document is its words, however
assuming all of the words in a document makes the feature set too
much big for text mining. Therefore, to overcome this problem a
preprocessing approach is necessary to reduce the dimension of
the feature set. To this aim, the common words (e.g. function
words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”, “she”, “it”) are
eliminated from the documents, also different forms of a stem are
determined as one.

6.3. Experimental setup

The entire proposed algorithms are applied to the introduced
datasets. The parameters are tuned as mentioned in Section 5.2.
The results shown in the rest of paper are the average over 30 runs
of the algorithms. Based on the achievements in Section 5.3 the
number of bees is indicated as a factor of the number of features
for each dataset.

6.4. Quality of clustering

In this part of experiments we compare the proposed algo-
rithms according to their quality of generated clusters with few
well known and efficient clustering algorithms including k-mean,
harmony search and GA based clustering algorithms [25,4].

For evaluation of clustering quality we used the two greatly
applicable metrics of SICD and F-measure. The SICD metric
measures the external quality while the F-measure examines the
internal quality of the clustering.

6.4.1. SICD based evaluation
Table 10 demonstrates the comparison of normalized SICD for

five datasets using both cosine and Euclidean similarity measures.
As it can be seen the result obtained by our proposed algorithms
outperforms k-means in all datasets and in average 5 step Inter-
leaved Hybridization outperform all the algorithms proposed.
Fig. 5 depicted this comparison for Euclidian similarity measure.

6.4.2. F-measure based evaluation
Another evaluation metric we utilize to compare the quality of

clustering resulted in our proposed algorithms is F-measure [5]. It
is defined as the harmonic means of precision and recall from
information retrieval. In our measurement each cluster is sup-
posed as if it were the result of a query and each class as if it were
the preferred set of documents for a query. The recall and
precision of that cluster for each specified class can then be
calculated. For a specified cluster of documents C¼ fc1; c2;…; cKg,
to assess the quality of C with respect to an ideal cluster
Cn ¼ fcn1; cn2;…; cnK g (categorization by human) we first compute
precision and recall as

PðC; CnÞ ¼
jC \ Cn j

jCj and RðC; CnÞ ¼
jC \ Cn j

jCj ð15Þ

Then we define:

FðC; CnÞ ¼ 2� PðC; CnÞ � RðC; CnÞ
PðC; CnÞþRðC; CnÞ

ð16Þ

Table 11 shows the details of F-measures compared to k-means
and GA. Again the 5 step Interleaved Hybridization has the best
performance according to F-measure and all other algorithms
outperform k-means and GA as well. Fig. 6 shows a better over-
view on this comparison.
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7. Conclusion

In this paper, we applied the bee colony optimization (BCO)
algorithm to the clustering problem. The shortcomings of basic
pure BCO based clustering were examined and refined in IBCO-
CLUST which is the improved version of the basic algorithm. In
particular, the improved algorithm is a novel modification of the
BCO optimization algorithm by introducing the fairness and
cloning properties which are aimed at increasing the explorative
power of the BCO algorithm and propagation of knowledge in an
optimization process, respectively.

Additionally, four different hybridization methods have been
proposed as well, which are basically the composition of IBCOCLUST
and the k-means algorithms in different manners: (1) IBKCLUST in
which the IBCOCLUST is applied before the k-means, (2) KIBCLUST
in which k-means is applied before the IBCOCLUST, (3) One step
Hybridization IBCOCLUSTþk-means in which at each iteration both
algorithms are applied simultaneously, and (4) k step Interleaved
Hybridization in which in each iteration k steps of each algorithm is
applied simultaneously. The performances of all of the proposed
algorithms are compared with well-known methods which are
widely used by the researchers in two applications of data and
document clustering. The results of the experiments show an
impressive improvement in comparison to others and can indicate
that the Improved Bee Colony algorithm can successfully be applied
to clustering for the purpose of clustering. It also shows that the k
step Interleaved Hybridization method results in best solution, since
in each iteration the steps of IBCOCLUST augment the search space
by searching more globally, and after that the k-means algorithm
has another k steps chance to find the locally optimum in the global
solution area that IBCOCLUST provided for it. As this process goes
on, the algorithm has a chance to investigate many local optima in
many global solution areas that are the best global solution areas
among other areas and therefore gain the best performance.

This work leaves few directions, both theoretically and empiri-
cally, as future work. In our setting, the number of clusters and the
number of data points were assumed to be fixed in advance and as a
result, a static matrix for the assignment of data points to the clusters
was sufficient for our optimization purpose. When the number of
clusters is not known or the data points can be dynamically added or
removed, this static structure would not be sufficient and a dynamic
data structure is necessary. We note that considering the hardness of
the clustering problem even for a fixed number of clusters and data
points, the dynamic problem is much more challenging and requires
careful investigating. It would be interesting to further examine this
issue as a future work.
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