
2016 Second International Conference on Web Research (ICWR)

978-1-5090-2166-6/16/$31.00 ©2016 IEEE
170

OMeGA: Ontology Matching enhanced by Genetic
Algorithm

Mehrnoush Shamsfard
Faculty of Computer Science and Engineering, Shahid

Beheshti University, Tehran, Iran,
m-shams@sbu.ac.ir

Behzad Helli
Faculty of Computer Science and Engineering, Shahid

Beheshti University, Tehran, Iran,
Behzad_helli@yahoo.com

Samira Babalou
Department of Computer Engineering, Faculty of

 Engineering, University of Science and Culture, Tehran, Iran,
 Samira_Babalou@yahoo.com

Abstract—In this paper, we propose a new ontology matching

approach, OMeGA, based on genetic algorithms applied on the
graph structure of ontologies. Our approach finds the linguistic-
structural similarities between concepts in two ontologies. It
introduces new fitness functions and new criteria for categorizing
test cases into four categories. Our approach does not need any
extra information or resource with exception to the ontology
itself. Experimental results on applying OMeGA on defined cases
show higher performance compared to existing method.

Index Terms—Ontology matching, genetic algorithms, graph
theory.

I. INTRODUCTION
It is well known that ontologies play a major role in

computer science and engineering and many related fields such
as social network [1], geographic information systems [2], e-
commerce [3], data warehousing [4] ,natural language
processing [5], multi-agent systems [6], information retrieval
[7]. Many systems and applications employ various ontologies
on various domains. Ontology mapping, integration, alignment
and matching are known to be among ontology engineering
activities, which enable interoperability among these
information and knowledge based systems.

Ontology matching refers to the process of finding the
correspondence between semantically related elements in two
different ontologies. It allows the knowledge and data
expressed in the matched ontologies to interoperate [8] and can
be used for various tasks such as ontology evaluation, question
answering, web service discovery, navigation on the semantic
web and so on. In this paper, we introduce a new method for
ontology matching that exploits genetic algorithms.

There are various ontology matching approaches focusing
on different elements and features of ontologies. They may be
applied in different levels from the shallowest one which
corresponds to lexical similarities between labels to the deepest
one which corresponds to matching the semantics of the
elements.

Ontology matching systems usually employ a similarity
discovery approach to calculate a similarity measure between
elements of two ontologies and compare it to a standard in
order to find corresponding elements. A matching system may
use one or more simple matchers including name matcher,
description matcher, property/restriction matcher, structure
matcher and semantic matcher to calculate similarities.

Name matchers (and also description matchers) look for
linguistic similarity of two strings of the concepts’ labels (or
descriptions). Similarity between labels can be calculated by
string matching methods such as longest common substring or
minimum edit distance. In some systems linguistic information
about the morphology or meaning of words can help the
system to find equivalent or similar labels.

Structure matchers focus on the structure of ontologies,
such as the topology of the graph or the shape of inclusion
hierarchy. In these matchers concepts are similar if they occur
in similar structures, which is defined by have similar relations
to similar concepts or similar attributes with similar values.
Studying the similarities between the restrictions on the
attribute-values by property matchers may enrich the second
case too. In this paper, we introduce a genetic based structure
matcher, which employs a name matcher to enhance the
results.

II. RELATED WORK
There are different approaches used in ontology alignment,

matching, merging and integration. Using artificial neural
networks (as in CIDER-CL [9]), Markov logic (as in CODI
[10]), parallelism (as in GOMMA [11]) and machine learning
techniques (as in YAM++ [12]) are some of the examples.

Exploiting genetic algorithms to align ontologies is another
topic which has gained attention in recent years. In GAOM
(Genetic Algorithm based Ontology Matching) [13], Wang and
colleagues used genetic algorithms as their main approach.
Their fitness function was built up using a set of correctly
matched nodes and a set of non-matched nodes. However, the
two sets created a weakness in their method because there is no

171

way to determine a correct match. Hence they counted the
matched items, versus the unmatched ones.

In another research paper, Jorge Martinez-Gil et al.
presented GOAL (Genetics for Ontology Alignments) [14].
They used four different fitness values, each for improving an
attribute of the alignment. The values are precision, recall, f-
measure and fallout. They used these values as different fitness
values, but the problem is that these values are unable to be
precise when the goal alignment lacks definition or
information.

As another past example, Ginsca and Iftene [15] used
genetic algorithms to optimize the similarity aggregation step
in ontology alignment. They first calculated the basic similarity
measures such as the syntactic, taxonomy and semantic
measures, then optimized the aggregation of these measures
using genetic algorithms. Using the same method, Naya and
colleagues [16] combined multiple similarity measures with
genetic algorithms. The drawback of [15, 16] is they required a
priori knowledge about ontologies under alignment in order to
select the most suitable set of the weights. The approach of
[15] focuses on optimizing the whole similarity aggregation
step as a single unit, including the threshold value in the
chromosome.

Acampora et al. [17] used a combination of genetic
algorithms and a hill climbing search to optimize the similarity
aggregation in the process of ontology matching. Their
approach simultaneously optimized both the combination of
weights and the threshold value used to perform the cut
operation. They optimized the whole similarity aggregation
phase by including the threshold value as a part of the
chromosome structure.

In this paper, a genetic based matching is presented that is
based on the similarity of the graph structures. Ontology graphs
need a great amount of process and space to find the best
match, so we devised a system to solve this problem. We
approached this by defining our system using the optimum data
structures and base algorithms that could be made. The other
feature of this method is its independency to any extra
information or resource. Our approach gets good results by
working on just the ontology itself and this is its advantage
compared to some other structured based algorithms such as
[18] in which the ontology hierarchy should be populated with
properly classified text documents.

In the next section, our matching method is presented. For
this purpose, at first, the genome and the generated fitness
value are defined and then the methods of mutation and cross-
over are shown. The third section is assigned to categorize
various ontologies that should be matched. Section four shows
the test bench we generated and used to evaluate the response
of the proposed system to different cases. The last section
discusses the conclusions.

III. THE PROPOSED METHOD
Matching Ontologies becomes complex when there is no

additional information such as document frequency or meta-
data about the two ontologies that are going to be matched. In
this paper’s proposed method, the only data that the system

works on is the ontology itself and, as explained in the rest of
the paper, the matching result has a better chance if the
ontologies have more complex structures.

The proposed method is a genetic based one. As the
system’s process iterations are rather high, it was very
important to reduce the complexity of the methods used in each
of the iterations.

A. The Genome
Each Genome represents a possible and valid matching

between the two ontologies. We call a matching ‘valid’, if after
applying matching and generating the result ontology; its
structure is a valid ontology structure (e.g. it has no “Is-a” or
“part of” loops). We call a matching ‘a possible one’, if each
node in one graph, is matched to at most one node in the other
graph. In ontology mapping in some cases, it may be possible
to match one node to two other nodes, but to make the genome
simpler; we only allow each node to be matched to at most one
node.

In this context, we introduce each ontology by graph A and
graph B. Each graph represents the structure of the ontology. In
order to have such properties, we define the Genome, as a 2D
matrix of dimensions of as , where is the number
of nodes in graph A, is the number of nodes in graph B and
each element in such as shows if node of
graph A is matched to node of graph B.

To check the validity of the structure, we have to find the
probable loops over the relations which are without loops (such
as “Is-a” and “part of”). To facilitate this, a graph was
generated from the genome and then using the DFS algorithm
the loops were searched for in the graph. The DFS algorithm
has the complexity of , where E is the number of edges. A
type of graph that must not have any loop is a Directed Acyclic
Graph (DAG). The complexity of a validity check of such a
graph is , which calculates a DFS route from each node
and checks if that node is in a loop. If the inheritance of the
objects is set to mono-parent inheritance, which makes the
graph form a tree and perform the validity check in a tree of

 where and are the number of edges and vertices of
the resulted graph, respectively.

The possibility check requires that no two nodes being
mapped to the same node. To check the possibility of the
genome, there must be no two true elements in Mat where they
are in the same row or same column. The best method to do so
is to flag each row or column used in the Genome, if a row or
column is flagged more than once, that means the node that is
represented by that row or column is matched to more than one
node. Using such an algorithm, the complexity order of the
possibility check will be .

If the whole matrix was stored, the space complexity would
be . But such a genome, that has at most one true
element in each row and column, is very sparse, so instead of
storing the entire matrix, the Sparse-Matrix structure was used,
which reduces the space complexity to).

B. The Fitness Function
The evaluation of the fitness function involves the

calculation and combination of four types of values, including:

172

• Node Positive (NP) value – each two nodes that
are matched - needs a calculation of their
similarity.

• Edge Positive (EP) value – each two edges in the
graphs that are matched together - should improve
the fitness.

• Edge Low Negative (ELN) value – any edge in
one graph where both its nodes are matched to two
nodes in the other graph, but the corresponding
edge does not exist - must reduce the fitness value.

• Edge High Negative (EHN) value – any edge in
one graph where both its nodes are matched to two
nodes in the other graph, but the corresponding
edge is reversed - must also reduce the fitness
value. In this case, the difference is the value must
be reduced with greater effect.

To generate the NP value, the string similarity method is
used. The Longest Common Subsequence (LCS) algorithm is
used to generate a similarity measure between the two labels.
The value is generated as Eq. (1) and Eq. (2).

)):(),:(max(
))):,:(((

):,:(
21

21
21

ji

ji

labelGLengthlabelGLength
labelGlalelGLCSLength

jGiGnp =
(1)

(2)

Because in many cases there is no similarity between the

two labels, the proposed system was also tested without using
the NP value. In that case, the system only tries to match the
best patterns of edges to each other.

To generate the EP value for each edge that has been
correctly matched to another edge in the graph needed the
calculation of a defined value (TEP). The value of TEP results in
a variation of the fitness, so the effect of different values of TEP
were evaluated. Eq. (3) shows the resultant EP value.

=

bjbiajai
bjajbiaiEP bjbiMatajaiMatEGEGT

MatGGEP

,,,
),(2),(1

21

),(&),(&:&:

),,((3)

Generating the ELN and EHN values has a similar method

to the EP value. In these cases, we check if the edge is
mismatched. Eq. (4) and Eq. (5) respectively show the amount
of ELN and EHN.

()=+
=

bjbiajai

bjajbiai
ELN bjbiMatajaiMat

EGEG
TMatGGELN

,,,

),(2),(1
21 1),(),(

&:&:
),,(

(4)

=
bjbiajai

ajbjbiai
EHN bjbiMatajaiMat

EGEG
TMatGGEHN

,,,

),(2),(1
21),(&),(

&:&:
),,(

(5)

The ELN value, counts the edges that have no

corresponding match in the other graph. And the EHN value,
counts the edges that have a corresponding match in a reverse
form.

C. Crossover and Mutation
The OMeGA algorithm can be described as follows:
(1) Having genome A and genome B, genome C is

generated as the exact common genes that they have
(common matches).

(2) For times, a slot of the gene matrix is
randomly selected.

a. If the gene was equal to one, for a probability
of destruction (Pd), the value becomes zero.

b. If the gene is equal to zero, for a probability
of construction (Pc) the value is changed to
one; as long as the resulted genome is still
valid and possible.

The above algorithm calculates every two genomes in the
population. Also the two best genomes (those with highest
fitness values) of the last population are added to this new set.
Then the fitness of all the new genomes are calculated and the
best size of population, denoted k, genomes are selected to be
in the next generation. Fig. 1. shows the flowchart of OMeGA.

Fig. 1. OMeGA flow diagram.

IV. DIFFERENT CASES OF MATCHING
Different cases of matching may occur, depending on the

similarity of the two ontologies. In order to classify these cases,
two similarity measures are defined.

First is the similarity of the structures of the two ontologies.
The two structures may be semi-identical or partially similar.
We call two structures, semi-identical structures, when the
basic structure of them is the same, but they may have or lack
some of the nodes from the basic form. A sample of such
ontologies is shown in Fig. 2. But if the basic form is not the

== 1),():,:(),,(
,

2121 jiMatjGiGnpMatGGNP
ji

173

(a) Base structure

(b) 1st Ontology 2nd Ontology

Fig. 2. A sample of semi-identical structures

same, we call them partially similar structures. Such difference
may occur in different languages or different views of the same
domain.

The second aspect is the similarity of the labels of the
nodes. Again the two ontologies may have semi-identical
labels or not. Semi-identical labels are in form of:

><>=< 111 postlprelabel and
><>=< 222 postlprelabel

which means, they have an identical substring. (It is
possible to have more than one pair of identical substrings in
the labels). Or they may have no similarities, which may occur
when the labels are from different natural languages or while
an object has more than two notations in the language. A
sample of these situations is shown in TABLE I. .

TABLE I. SAMPLE OF SEMI-IDENTICAL AND NON SEMI-IDENTICAL LABELS

1st Label 2nd Label Type of similarity
Humans Human Semi-identical
Humans Human-form Semi-identical
Humans People Non Semi-identical
Humans Man-kind Non Semi-identical
Humans 1 Non Semi-identical

In the rest of this section we discuss how OMeGA matcher

deals with various cases which occur according to the above
two similarity measures.

A. Semi-Identical Structures, Semi-Identical Labels
In this case, the two ontologies have the same basic

structure and the labels are semi-identical, the difference is that
there are some nodes in one ontology that are not present in the
other ontology and vice versa. An example of such two
ontologies is shown in Fig. 3. .

1 Means Human in Persian and Arabic

 These types of ontologies are usually created when a big
domain is divided into smaller domains whose ontologies are
developed by the members of a research group. . The resulted
small ontologies are represented in such a form. In order to
match these ontologies, the basic form of the system should be
used.

B. Semi-identical Structures, non semi-identical Labels
In this case, the basic structure of the ontologies is the

same, but the labeling is different. Fig. 3. can be a sample of
such ontologies if the labeling in one of the ontologies was
done in another language. These types of ontologies are more
common than the others. There could be cases where some
labels are semi-identical but there are also labels that exist with
no similarity between them.

In order to match those two types of ontologies, it’s better
to calculate and use the NP value; but if its value is near one,
there a greater emphasis is required opposed to when there is
almost no similarity between labels.

C. Partially similar Structure, semi-identical Labels
In this case, the two ontologies must be matched mostly by

their labels. For example in Fig. 4. , the “human” node has
gotten to a place that is both child of “mammal” and “living
thing”.

In this case, we should emphasize the label’s similarity
effect more than the basic form of the system. So it can match
the ontologies more on their node values.

D. Partially similar Structure, non semi-identical Labels
In this case, even a human agent can’t be absolute in

generating the best match, especially when the ontologies are
not in same language. The only information that is available in
this situation is the partial similarity of the structures. So any
system should try to match the best sub-ontologies to each
other. A sample of such a match is shown in Fig. 4. , when one
of the ontologies is in another language. In such a case the
human node is not recognizable.

The proposed system can only be used to generate small
local suggestions and can’t be absolute on the whole ontology.
This condition is not regular and is not mentioned in standard
test benches.

V. TEST BENCHES & EXPERIMENTAL RESULTS
In order to test the system in different situations, two test

benches were generated. The first test set is taken from [19].
This dataset consists of four groups of ontologies (animals,
russia, tourism, sport) and each group has two OWL ontologies
and reference matching results. For the second test bench we
developed an application to generate two ontologies that could
get mapped to each other. To accomplish this, first a random
ontology with N vertices was made, then the relevant ontology
was duplicated, which involved a random elimination of some
nodes of the original ontology and some of the names were
disfigured. Thereafter, exist two ontologies that embed a partial
match. Using such an ontology generator, different ontologies
with different nodes and relation numbers can be generated, so

174

Fig. 3. Sample of two Ontologies with semi-identical structure and labels

Fig. 4. The difference in structure is occurred because of the difference in

beliefs. One expert believes humans are mammals, but the other one
categorizes it under living things

the tests are more controllable by defining different number of
nodes and relations.

The FOAM test bench was gathered from ontologies that
had semi-identical structures, in some nodes the labeling was
exactly the same and in some other cases the labeling had no
similarities. So, the second form of the application was used on
them. The results of the FOAM ontologies are shown in
TABLE II. .

We use standard information retrieval metrics to assess the
results of our tests that are shown in Eq. (6), Eq. (7), and Eq.
(8).

(6)

 (7)

 (8)

TABLE II. RESULTS OF APPLYING OMEGA ON FAOM DATASET

As it can be seen in TABLE II. , the results show the

superiority of our approach over the approach proposed by
Shen et al. [20].

As the ontologies of the first have the same structure, in
order to complete the tests we developed a program to generate
a pair ontology with differences in four scenarios.
1) Generating Type 1 ontologies.

a) A random ontology with N nodes and M relationships
is generated.

b) The ontology is duplicated
c) For K times, a random node is selected from each

ontology
i) It might be deleted
ii) Its name might be transformed in a way where it

pertains similarities to the prior name (this
operation is limited to two iterations on one node)

2) Generating Type 2 ontologies.
a) A random ontology with N nodes and M relationships

is generated.
b) The ontology is duplicated
c) For K times, a random node is selected from each

ontology
i) It might be deleted
ii) Its name might be transformed randomly

3) Generating Type 3 ontologies.

Ontology name Russia Tourism sport Animals

Pair type 1 2 2 2

OMeGA precision 0.997 0.95 0.99 1.00
Recall 0.98 0.96 0.99 1.00

F-measure 0.99 0.95 0.99 1.00
[20] Precision 0.98 0.96 0.90 1.00

recall 0.69 0.89 0.93 0.78
F-measure 0.81 0.92 0.92 0.88

175

a) A random ontology with N nodes and M relationships
is generated.

b) The ontology is duplicated
c) For K1 times, a random node is selected from each

ontology
i) Its name might be transformed in a way that it is

still similar to the last name (this operation is
limited to two iterations on one node)

d) For K2 times, a random edge is selected from each
ontology
i) It may be deleted
ii) It may be randomly put to another place

4) Generating Type 4 ontologies.
a) A random ontology with N nodes and M relationships

is generated.
b) The ontology is duplicated
c) For K1 times, a random node is selected from each

ontology
i) Its name might be transformed randomly

d) For K2 times, a random edge is selected from each
ontology
i) It may be deleted.
ii) It may be randomly put to another place.

Such types of ontology pairs were generated while the
number of edges was closely observed, so in steps of 50, the
system was executed over the remaining ontologies.

As Fig. 5. shows, the proposed system has a predictable
response to type-1 ontology pairs. Its performance rises when
there are more edges to be matched and it also gets faster. The
answer is attained faster when the conditions of the nodes are
more unique in such cases when there are more edges to be
matched. In case of type-2 ontologies, its performance
increases by increasing the number of edges; however, the
number of iterations needed to get to the best result at first
increases and then decreases. It increases because at first the
similarity of nodes and edges are found in contradiction, so it
takes longer to decide, but after a while enough edges exist so,
the best match becomes easier to identify. In type-3 ontology
matching, the performance increases slightly in response to an
increase in the number of edges, but because the structures are
in contrast with each other, more iterations are needed to reach
a stable solution. (It’s important to mention that at least half of
the similar structures are not destroyed in the random ontology
pair generator). In type-4 situation, the behavior of the system
is similar to the type-3 case, with lower performance.

VI. CONCLUSION
The proposed system, in spite of other ontology matcher

systems, is only based on the structure. This paper has shown it
to be a powerful system, due to its independence of any extra
information on the ontologies - like most ontology matchers
based on f-measure that are generated using extra documents.

To reduce the computational complexity at each iteration,
only the valid and possible matchings are used to define
genomes. Besides, using new structures reduces the space
complexity from to . In this paper, four new
fitness functions have been suggested. Also, according to two

defined criteria (label versus structure and semi versus partial
similarity) four different cases are created and studied. Results
of this study show that OMeGA algorithm, can find linguistic
and structural similarities with high performance.

(a)

(b)

Fig. 5. (a) the performance of the system, according to the number of
relations. (b) the number of iterations done by the system.

REFERENCES
[1] R. Lecocq, E. Martineau, and M. F. Caropreso, "An

Ontology-based Social Network Analysis Prototype,"
in Cognitive Methods in Situation Awareness and
Decision Support (CogSIMA), 2013 IEEE
International Multi-Disciplinary Conference on,
2013, pp. 149-154.

[2] F. T. Fonseca, M. J. Egenhofer, P. Agouris, and G.
Câmara, "Using ontologies for integrated geographic

Number of edges

N
um

be
r o

f i
te

ra
tio

ns

Pe
rf

or
m

an
ce

176

information systems," Transactions in GIS, vol. 6,
pp. 231-257, 2002.

[3] A. Léger, G. Michel, P. Barrett, S. Gitton, A. Goméz-
Pérez, A. Lehtola, et al., "Ontology Domain
Modeling Support for Multilingual Servicies in e-
commerce: MKBEEM," 2000.

[4] J. Gitanjali, C. Ranichandra, M. Kuriakose, and R.
Kuruba, "Ontology and Hyper Graph Based
Dashboards in Data Warehousing Systems,"
International Journal of Engineering & Technology
(0975-4024), vol. 6, 2014.

[5] J. A. Bateman, J. Hois, R. Ross, and T. Tenbrink, "A
linguistic ontology of space for natural language
processing," Artificial intelligence, vol. 174, pp.
1027-1071, 2010.

[6] M. Obitko and V. Marík, "Ontologies for multi-agent
systems in manufacturing domain," in Database and
Expert Systems Applications, 2002. Proceedings.
13th International Workshop on, 2002, pp. 597-602.

[7] H.-M. Müller, E. E. Kenny, and P. W. Sternberg,
"Textpresso: an ontology-based information retrieval
and extraction system for biological literature," PLoS
biology, vol. 2, p. e309, 2004.

[8] P. Shvaiko, J. Euzenat, F. Giunchiglia, and H.
Stuckenschmidt, "Ontology Matching," The 7th
International Semantic Web Conference, 2008.

[9] J. Gracia and K. Asooja, "Monolingual and Cross-
lingual Ontology Matching with CIDER-CL:
evaluation report for OAEI 2013," Ontology
Matching, p. 109, 2013.

[10] J. Huber, T. Sztyler, J. Noessner, and C. Meilicke,
"CODI: Combinatorial optimization for data
integration–results for OAEI 2011," Ontology
Matching, p. 134, 2011.

[11] T. Kirsten, A. Gross, M. Hartung, and E. Rahm,
"GOMMA: a component-based infrastructure for
managing and analyzing life science ontologies and
their evolution," J. Biomedical Semantics, vol. 2, p.
6, 2011.

[12] D. Ngo and Z. Bellahsene, "YAM++: a multi-
strategy based approach for ontology matching task,"
in Knowledge Engineering and Knowledge
Management, ed: Springer, 2012, pp. 421-425.

[13] J. Wang, Z. Ding, and C. Jiang, "Gaom: Genetic
algorithm based ontology matching," in Services
Computing, 2006. APSCC'06. IEEE Asia-Pacific
Conference on, 2006, pp. 617-620.

[14] J. Martinez-Gil, E. Alba, and J. F. Aldana-Montes,
"Optimizing ontology alignments by using genetic
algorithms," in Proceedings of the workshop on
nature based reasoning for the semantic Web.
Karlsruhe, Germany, 2008.

[15] G. Alexandru-Lucian and A. Iftene, "Using a genetic
algorithm for optimizing the similarity aggregation
step in the process of ontology alignment," in
Roedunet International Conference (RoEduNet),
2010 9th, 2010, pp. 118-122.

[16] J. M. V. Naya, M. M. Romero, J. P. Loureiro, C. R.
Munteanu, and A. P. Sierra, "Improving ontology
alignment through genetic algorithms," Soft
computing methods for practical environment
solutions: techniques and, studies, pp. 240-259,
2010.

[17] G. Acampora, U. Kaymak, V. Loia, and A. Vitiello,
"Hybridizing genetic algorithms and hill climbing for
similarity aggregation in ontology matching," in
Computational Intelligence (UKCI), 2012 12th UK
Workshop on, 2012, pp. 1-6.

[18] K. Todorov and P. Geibel, "Ontology mapping via
structural and instance-based similarity measures," in
The 7th International Semantic Web Conference,
2008, p. 224.

[19] M. Ehrig and Y. Sure, "Foam–framework for
ontology alignment and mapping results of the
ontology alignment evaluation initiative," in
Integrating Ontologies Workshop Proceedings, 2005.

[20] G. Shen, Z. Huang, X. Zhu, L. Wang, and G. Xiang,
"Using Description Logics Reasoner for Ontology
Matching," in Intelligent Information Technology
Application, Workshop on, 2007, pp. 30-33.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

